Rxivist logo

Single-Cell Transcriptome Sequencing Of Human Induced Pluripotent Stem Cells Identifies Differentially Primed Subpopulations

By Quan Nguyen, Samuel W. Lukowski, Han Sheng Chiu, Anne Senabouth, Timothy J. C. Bruxner, Angelika N. Christ, Nathan J. Palpant, Joseph E Powell

Posted 22 Mar 2017
bioRxiv DOI: 10.1101/119255 (published DOI: 10.1101/gr.223925.117)

Heterogeneity of cell states represented in pluripotent cultures have not been described at the transcriptional level. Since gene expression is highly heterogeneous between cells, single-cell RNA sequencing can be used to identify how individual pluripotent cells function. Here, we present results from the analysis of single-cell RNA sequencing data from 18,787 individual WTC CRISPRi human induced pluripotent stem cells. We developed an unsupervised clustering method, and through this identified four subpopulations distinguishable on the basis of their pluripotent state including: a core pluripotent population (48.3%), proliferative (47.8%), early-primed for differentiation (2.8%) and late-primed for differentiation (1.1%). For each subpopulation we were able to identify the genes and pathways that define differences in pluripotent cell states. Our method identified four transcriptionally distinct predictor gene sets comprised of 165 unique genes that denote the specific pluripotency states; and using these sets, we developed a multigenic machine learning prediction method to accurately classify single cells into each of the subpopulations. Compared against a set of established pluripotency markers, our method increases prediction accuracy by 10%, specificity by 20%, and explains a substantially larger proportion of deviance (up to 3-fold) from the prediction model. Finally, we developed an innovative method to predict cells transitioning between subpopulations, and support our conclusions with results from two orthogonal pseudotime trajectory methods.

Download data

  • Downloaded 3,922 times
  • Download rankings, all-time:
    • Site-wide: 4,514
    • In genomics: 393
  • Year to date:
    • Site-wide: 190,585
  • Since beginning of last month:
    • Site-wide: 163,183

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide