Rxivist logo

BACKGROUND: There have been considerable recent advances in understanding the genetic architecture of Tourette Syndrome (TS) as well as its underlying neurocircuitry. However, the mechanisms by which genetic variations that increase risk for TS - and its main symptom dimensions - influence relevant brain regions are poorly understood. Here we undertook a genome-wide investigation of the overlap between TS genetic risk and genetic influences on the volume of specific subcortical brain structures that have been implicated in TS. METHODS: We obtained summary statistics for the most recent TS genome-wide association study (GWAS) from the TS Psychiatric Genomics Consortium Working Group (4,644 cases and 8,695 controls) and GWAS of subcortical volumes from the ENIGMA consortium (30,717 individuals). We also undertook analyses using GWAS summary statistics of key symptom factors in TS, namely social disinhibition and symmetry behaviour. SNP Effect Concordance Analysis (SECA) was used to examine genetic pleiotropy - the same SNP affecting two traits - and concordance - the agreement in SNP effect directions across these two traits. In addition, a conditional false discovery rate (FDR) analysis was performed, conditioning the TS risk variants on each of the seven subcortical and the intracranial brain volume GWAS. Linkage Disequilibrium Score Regression (LDSR) was used as validation of SECA. RESULTS: SECA revealed significant pleiotropy between TS and putaminal (p=2x10-4) and caudal (p=4x10-4) volumes, independent of direction of effect, and significant concordance between TS and lower thalamic volume (p=1x10-3). LDSR lent additional support for the association between TS and thalamic volume (p=5.85x10-2). Furthermore, SECA revealed significant evidence of concordance between the social disinhibition symptom dimension and lower thalamic volume (p=1x10-3), as well as concordance between symmetry behaviour and greater putaminal volume (p=7x10-4). Conditional FDR analysis further revealed novel variants significantly associated with TS (p<8x10-7) when conditioning on intracranial (rs2708146, q=0.046; and rs72853320, q=0.035) and hippocampal (rs1922786, q=0.001) volumes respectively. CONCLUSION: These preliminary data indicate concordance for genetic variations involved in disorder risk and subcortical brain volumes in TS. Further work with larger samples is needed to fully delineate the genetic architecture of these disorders and their underlying neurocircuitry.

Download data

  • Downloaded 341 times
  • Download rankings, all-time:
    • Site-wide: 87,046
    • In genomics: 5,573
  • Year to date:
    • Site-wide: 135,298
  • Since beginning of last month:
    • Site-wide: 145,885

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide