Rxivist logo

Quantitative neuroanatomy for connectomics in Drosophila

By Casey Schneider-Mizell, Stephan Gerhard, Mark Longair, Tom Kazimiers, Feng Li, Maarten F. Zwart, Andrew Champion, Frank Midgley, Richard Fetter, Stephan Saalfeld, Albert Cardona

Posted 10 Sep 2015
bioRxiv DOI: 10.1101/026617 (published DOI: 10.7554/eLife.12059)

Large-scale neuronal circuit mapping using electron microscopy demands laborious proofreading by humans who resolve local ambiguities with larger contextual cues or by reconciling multiple indepen- dent reconstructions. We developed a new method that empowers expert neuroanatomists to apply quantitative arbor and network context to proofread and reconstruct neurons and circuits. We implemented our method in the web application CATMAID, supporting a group of collaborators to concurrently reconstruct neurons in the same circuit. We measured the neuroanatomical underpinnings of circuit connectivity in Drosophila neurons. We found that across life stages and cell types, synaptic inputs were preferentially located on spine-like microtubule-free branches, "twigs", while synaptic outputs were typically on microtubule-containing "backbone". The differential size and tortuosity of small twigs and rigid backbones was reflected in reconstruction errors, with nearly all errors being omission or truncation of twigs. The combination of redundant twig connectivity and low backbone error rates al- lows robust mapping of Drosophila circuits without time-consuming independent reconstructions. As a demonstration, we mapped a large sensorimotor circuit in the larva. We found anatomical pathways for proprioceptive feedback into motor circuits and applied novel methods of representing neuroanatomical compartments to describe their detailed structure. Our work suggests avenues for incorporating neuroanatomy into machine-learning approaches to connectomics and reveals the largely unknown circuitry of larval locomotion.

Download data

  • Downloaded 1,547 times
  • Download rankings, all-time:
    • Site-wide: 6,503 out of 101,236
    • In neuroscience: 965 out of 18,037
  • Year to date:
    • Site-wide: 45,654 out of 101,236
  • Since beginning of last month:
    • Site-wide: 55,167 out of 101,236

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News

  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!