Rxivist logo

Genome-wide association studies (GWAS) have identified thousands of genetic variants linked to the risk of human disease. However, GWAS have thus far remained largely underpowered to identify associations in the rare and low frequency allelic spectrum and have lacked the resolution to trace causal mechanisms to underlying genes. Here, we combined whole exome sequencing in 392,814 UK Biobank participants with imputed genotypes from 260,405 FinnGen participants (653,219 total individuals) to conduct association meta-analyses for 744 disease endpoints across the protein-coding allelic frequency spectrum, bridging the gap between common and rare variant studies. We identified 975 associations, with more than one-third of our findings not reported previously. We demonstrate population-level relevance for mutations previously ascribed to causing single-gene disorders, map GWAS associations to likely causal genes, explain disease mechanisms, and systematically relate disease associations to levels of 117 biomarkers and clinical-stage drug targets. Combining sequencing and genotyping in two population biobanks allowed us to benefit from increased power to detect and explain disease associations, validate findings through replication and propose medical actionability for rare genetic variants. Our study provides a compendium of protein-coding variant associations for future insights into disease biology and drug discovery.

Download data

  • Downloaded 1,136 times
  • Download rankings, all-time:
    • Site-wide: 24,426
    • In genetic and genomic medicine: 118
  • Year to date:
    • Site-wide: 26,091
  • Since beginning of last month:
    • Site-wide: 17,481

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide