Rxivist logo

Segregation between the parietal memory network and the default mode network: Effects of spatial smoothing and model order in ICA

By Xiaoyu Zhuo, Jijun Wang, Jinliang Yang, Yin-shan Wang, Zhi Yang, Xi-Nian Zuo

Posted 09 Nov 2016
bioRxiv DOI: 10.1101/086454 (published DOI: 10.1007/s11434-016-1202-z)

A brain network consisting of two key parietal nodes, the precuneus and the posterior cingulate cortex, has emerged from recent fMRI studies. Though it is anatomically adjacent to and spatially overlaps with the default mode network (DMN), its function has been associated with memory processing, and it has been referred to as the parietal memory network (PMN). Independent component analysis (ICA) is the most common data-driven method of extracting PMN and DMN simultaneously. However, the effects of data preprocessing and parameter determination in ICA on PMN-DMN segregation are completely unknown. Here, we employ three typical algorithms of group ICA to assess how spatial smoothing and model order influence the degree of PMN-DMN segregation. Our findings indicate that PMN and DMN can only be stably separated using a combination of low-level spatial smoothing and high-order model across the three ICA algorithms. We thus argue for more considerations on parametric settings for interpreting DMN data.

Download data

  • Downloaded 409 times
  • Download rankings, all-time:
    • Site-wide: 127,310
    • In neuroscience: 18,529
  • Year to date:
    • Site-wide: 117,178
  • Since beginning of last month:
    • Site-wide: 207,154

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide