Rxivist logo

The challenge of structural heterogeneity in the native mass spectrometry studies of the SARS-CoV-2 spike protein interactions with its host cell-surface receptor

By Yang Yang, Daniil G. Ivanov, Igor A Kaltashov

Posted 21 Jun 2021
bioRxiv DOI: 10.1101/2021.06.20.449191

Native mass spectrometry (MS) enjoyed tremendous success in the past two decades in a wide range of studies aiming at understanding the molecular mechanisms of physiological processes underlying a variety of pathologies and accelerating the drug discovery process. However, the success record of native MS has been surprisingly modest with respect to the most recent challenge facing the biomedical community - the novel coronavirus infection (COVID-19). The major reason for the paucity of successful studies that use native MS to target various aspects of SARS-CoV-2 interaction with its host is the extreme degree of structural heterogeneity of the viral protein playing a key role in the host cell invasion. Indeed, the SARS-CoV-2 spike protein (S-protein) is extensively glycosylated, presenting a formidable challenge for native mass spectrometry (MS) as a means of characterizing its interactions with both the host cell-surface receptor ACE2 and the drug candidates capable of disrupting this interaction. In this work we evaluate the utility of native MS complemented with the experimental methods using gas-phase chemistry (limited charge reduction) to obtain meaningful information on the association of the S1 domain of the S-protein with the ACE2 ectodomain, and the influence of a small synthetic heparinoid on this interaction. Native MS reveals the presence of several different S1 oligomers in solution and allows the stoichiometry of the most prominent S1/ACE2 complexes to be determined. This enables meaningful interpretation of the changes in native MS that are observed upon addition of a small synthetic heparinoid (the pentasaccharide fondaparinux) to the S1/ACE2 solution, confirming that the small polyanion destabilizes the protein/receptor binding.

Download data

  • Downloaded 254 times
  • Download rankings, all-time:
    • Site-wide: 119,254
    • In biochemistry: 3,557
  • Year to date:
    • Site-wide: 33,276
  • Since beginning of last month:
    • Site-wide: 62,022

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide