Rxivist logo

The prevalence of clonal haematopoiesis of indeterminate potential (CHIP) in healthy individuals increases rapidly from age 60 onwards and has been associated with increased risk for malignancy, heart disease and ischemic stroke. CHIP is driven by somatic mutations in stem cells that are also drivers of myeloid malignancies. Since mutations in stem cells often drive leukaemia, we hypothesised that stem cell fitness substantially contributes to transformation from CHIP to leukaemia. Stem cell fitness is defined as the proliferative advantage over cells carrying no or only neutral mutations. It is currently unknown whether mutations in different CHIP genes lead to distinct fitness advantages that could form the basis for patient stratification. We set out to quantify the fitness effects of CHIP drivers over a 12 year timespan in older age, using longitudinal error-corrected sequencing data. We developed a new method based on drift-induced fluctuation (DIF) filtering to extract fitness effects from longitudinal data, and thus quantify the growth potential of variants within each individual. Our approach discriminates naturally drifting populations of cells and faster growing clones, while taking into account individual mutational context. We show that gene-specific fitness differences can outweigh inter-individual variation and therefore could form the basis for personalised clinical management.

Download data

  • Downloaded 915 times
  • Download rankings, all-time:
    • Site-wide: 29,849
    • In cell biology: 1,122
  • Year to date:
    • Site-wide: 4,819
  • Since beginning of last month:
    • Site-wide: 4,041

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

News