Rxivist logo

Reward signalling in brainstem nuclei under glycemic flux

By Tobias Morville, Kristoffer Madsen, Hartwig R Siebner, Oliver J Hulme

Posted 04 Jan 2018
bioRxiv DOI: 10.1101/243006

Phasic dopamine release from mid-brain dopaminergic neurons signals errors of reward prediction (RPE). If reward maximisation is to maintain homeostasis, then the value of primary rewards should be coupled to the homeostatic errors they remediate. This leads to the prediction that RPE signals should be configured as a function of homeostatic state and thus, diminish with the attenuation of homeostatic error. To test this hypothesis, we collected a large volume of functional MRI data from five human volunteers on four separate days. After fasting for 12 hours, subjects consumed preloads that differed in glucose concentration. Participants then underwent a Pavlovian cue-conditioning paradigm in which the colour of a fixation-cross was stochastically associated with the delivery of water or glucose via a gustometer. This design afforded computation of RPE separately for better- and worse-than expected outcomes during ascending and descending trajectories of physiological serum glucose fluctuations. In the parabrachial nuclei, variations in regional activity coding positive RPEs scaled positively with serum glucose for ascending and descending glucose levels. The ventral tegmental area and substantia nigra became more sensitive to negative RPEs when glucose levels were ascending. Together, the results show that RPE signals in key brainstem structures are modulated by homeostatic trajectories of naturally occurring glycemic flux, revealing a tight interplay between homeostatic state and the neural encoding of primary reward in the human brain.

Download data

  • Downloaded 610 times
  • Download rankings, all-time:
    • Site-wide: 59,421
    • In neuroscience: 8,442
  • Year to date:
    • Site-wide: 94,583
  • Since beginning of last month:
    • Site-wide: 119,730

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide