Rxivist logo

Resting-state functional brain connectivity best predicts the personality dimension of openness to experience

By Julien Dubois, Paola Galdi, Yanting Han, Lynn K. Paul, Ralph Adolphs

Posted 07 Nov 2017
bioRxiv DOI: 10.1101/215129 (published DOI: 10.1017/pen.2018.8)

Personality neuroscience aims to find associations between brain measures and personality traits. Findings to date have been severely limited by a number of factors, including small sample size and omission of out-of-sample prediction. We capitalized on the recent availability of a large database, together with the emergence of specific criteria for best practices in neuroimaging studies of individual differences. We analyzed resting-state functional magnetic resonance imaging data from 884 young healthy adults in the Human Connectome Project (HCP) database. We attempted to predict personality traits from the "Big Five", as assessed with the NEO-FFI test, using individual functional connectivity matrices. After regressing out potential confounds (such as age, sex, handedness and fluid intelligence), we used a cross-validated framework, together with test-retest replication (across two sessions of resting-state fMRI for each subject), to quantify how well the neuroimaging data could predict each of the five personality factors. We tested three different (published) denoising strategies for the fMRI data, two inter-subject alignment and brain parcellation schemes, and three different linear models for prediction. As measurement noise is known to moderate statistical relationships, we performed final prediction analyses using average connectivity across both imaging sessions (1 h of data), with the analysis pipeline that yielded the highest predictability overall. Across all results (test/retest; 3 denoising strategies; 2 alignment schemes; 3 models), openness to experience emerged as the only reliably predicted personality factor. Using the full hour of resting-state data and the best pipeline, we could predict openness to experience (NEOFAC_O: r=0.24, R^2 =0.024) almost as well as we could predict the score on a 24-item intelligence test (PMAT24_A_CR: r=0.26, R^2 =0.044). Other factors (extraversion, neuroticism, agreeableness and conscientiousness) yielded weaker predictions across results that were not statistically significant under permutation testing. We also derived two superordinate personality factors ("α" and "β") from a principal components analysis of the NEO-FFI factor scores, thereby reducing noise and enhancing the precision of these measures of personality. We could account for 5% of the variance in the β superordinate factor (r=0.27, R^2 =0.050), which loads highly on openness to experience. We conclude with a discussion of the potential for predicting personality from neuroimaging data and make specific recommendations for the field.

Download data

  • Downloaded 2,597 times
  • Download rankings, all-time:
    • Site-wide: 2,217 out of 85,215
    • In neuroscience: 308 out of 15,169
  • Year to date:
    • Site-wide: 10,121 out of 85,215
  • Since beginning of last month:
    • Site-wide: 20,215 out of 85,215

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News