Rxivist logo

Disruption of The Psychiatric Risk Gene Ankyrin 3 Enhances Microtubule Dynamics Through GSK3/CRMP2 Signaling

By Jacob C Garza, Xiaoli Qi, Klaudio Gjeluci, Melanie P Leussis, Himanish Basu, Surya A Reis, Wen Ning Zhao, Nicolas Piguel, Peter Penzes, Stephen J Haggarty, Gerard J Martens, Geert Poelmans, Tracey L Petryshen

Posted 21 Apr 2018
bioRxiv DOI: 10.1101/303990 (published DOI: 10.1038/s41398-018-0182-y)

The ankyrin 3 gene (ANK3) is a well-established risk gene for psychiatric illness, but the mechanisms underlying its pathophysiology remain elusive. We examined the molecular effects of disrupting brain-specific Ank3 isoforms in mouse and neuronal model systems. RNA sequencing of hippocampus from Ank3+/- and Ank3+/+ mice identified altered expression of 282 genes that were enriched for microtubule-related functions. Results were supported by increased expression of microtubule end-binding protein 3 (EB3), an indicator of microtubule dynamics, in Ank3+/- mouse hippocampus. Live-cell imaging of EB3 movement in primary neurons from Ank3+/- mice revealed stunted polymerization at microtubule plus-ends. Using a CRISPR-dCas9-KRAB transcriptional repressor in mouse neuro-2a cells, we determined that repression of brain-specific Ank3 increased EB3 expression, decreased tubulin acetylation, and increased the soluble:polymerized tubulin ratio, indicating enhanced microtubule dynamics. These changes were rescued by inhibition of glycogen synthase kinase 3 (GSK3) with lithium or CHIR99021, a highly selective GSK3 inhibitor. Brain-specific Ank3 repression in neuro-2a cells increased GSK3 activity (reduced inhibitory phosphorylation) and elevated collapsin response mediator protein 2 (CRMP2) phosphorylation, a known GSK3 substrate and microtubule-binding protein. Pharmacological inhibition of CRMP2 activity attenuated the rescue of EB3 expression and tubulin polymerization in Ank3 repressed cells by lithium or CHIR99021, suggesting microtubule instability induced by Ank3 repression is dependent on CRMP2 activity. Taken together, our data indicate that ANK3 functions in neuronal microtubule dynamics through GSK3 and its downstream substrate CRMP2. These findings reveal cellular and molecular mechanisms underlying brain-specific ANK3 disruption that may be related to its role in psychiatric illness.

Download data

  • Downloaded 364 times
  • Download rankings, all-time:
    • Site-wide: 135,404
    • In neuroscience: 19,861
  • Year to date:
    • Site-wide: 185,861
  • Since beginning of last month:
    • Site-wide: 91,356

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide