Rxivist logo

Mutation rates and selection on synonymous mutations in SARS-CoV-2

By Nicola De Maio, Conor R Walker, Yatish Turakhia, Robert Lanfear, Russell Corbett-Detig, Nick Goldman

Posted 14 Jan 2021
bioRxiv DOI: 10.1101/2021.01.14.426705

The COVID-19 pandemic has seen an unprecedented response from the sequencing community. Leveraging the sequence data from more than 140,000 SARS-CoV-2 genomes, we study mutation rates and selective pressures affecting the virus. Understanding the processes and effects of mutation and selection has profound implications for the study of viral evolution, for vaccine design, and for the tracking of viral spread. We highlight and address some common genome sequence analysis pitfalls that can lead to inaccurate inference of mutation rates and selection, such as ignoring skews in the genetic code, not accounting for recurrent mutations, and assuming evolutionary equilibrium. We find that two particular mutation rates, G[->]U and C[->]U, are similarly elevated and considerably higher than all other mutation rates, causing the majority of mutations in the SARS-CoV-2 genome, and are possibly the result of APOBEC and ROS activity. These mutations also tend to occur many times at the same genome positions along the global SARS-CoV-2 phylogeny (i.e., they are very homoplasic). We observe an effect of genomic context on mutation rates, but the effect of the context is overall limited. While previous studies have suggested selection acting to decrease U content at synonymous sites, we bring forward evidence suggesting the opposite.

Download data

  • Downloaded 1,372 times
  • Download rankings, all-time:
    • Site-wide: 21,834
    • In evolutionary biology: 973
  • Year to date:
    • Site-wide: 16,734
  • Since beginning of last month:
    • Site-wide: 8,824

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide