Rxivist logo

SARS-CoV-2 amino acid replacements in the receptor binding domain (RBD) occur relatively frequently and some have a consequence for immune recognition. Here we report recurrent emergence and significant onward transmission of a six-nucleotide out of frame deletion in the S gene, which results in loss of two amino acids: H69 and V70. We report that in human infections delH69/V70 often co-occurs with the receptor binding motif amino acid replacements N501Y, N439K and Y453F, and in the latter two cases has followed the RBD mutation. One of the {Delta}H69/V70+ N501Y lineages, now known as B.1.1.7, has undergone rapid expansion and includes eight S gene mutations: RBD (N501Y and A570D), S1 (delH69/V70 and delY144) and S2 (P681H, T716I, S982A and D1118H). In vitro, we show that delH69/V70 does not reduce serum neutralisation across multiple convalescent sera. However, delH69/V70 increases infectivity and is associated with increased incorporation of cleaved spike into virions. delH69/V70 is able to compensate for small infectivity defects induced by RBD mutations N501Y, N439K and Y453F. In addition, replacement of H69 and V70 residues in the B.1.1.7 spike reduces its infectivity and spike mediated cell-cell fusion. Based on our data delH69/V70 likely acts as a permissive mutation that allows acquisition of otherwise deleterious immune escape mutations. Enhanced surveillance for the delH69/V70 deletion with and without RBD mutations should be considered as a global priority not only as a marker for the B.1.1.7 variant, but potentially also for other emerging variants of concern. Vaccines designed to target the deleted spike protein could mitigate against its emergence as increased selective forces from immunity and vaccines increase globally.

Download data

  • Downloaded 32,082 times
  • Download rankings, all-time:
    • Site-wide: 292
    • In microbiology: 28
  • Year to date:
    • Site-wide: 5,213
  • Since beginning of last month:
    • Site-wide: 2,088

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

News