Rxivist logo

Rxivist combines preprints from bioRxiv with data from Twitter to help you find the papers being discussed in your field. Currently indexing 73,697 bioRxiv papers from 320,714 authors.

Penalized matrix decomposition for denoising, compression, and improved demixing of functional imaging data

By E. Kelly Buchanan, Ian Kinsella, Ding Zhou, Rong Zhu, Pengcheng Zhou, Felipe Gerhard, John Ferrante, Ying Ma, Sharon Kim, Mohammed Shaik, Yajie Liang, Rongwen Lu, Jacob Reimer, Paul Fahey, Taliah Muhammad, Graham Dempsey, Elizabeth Hillman, Na Ji, Andreas Tolias, Liam Paninski

Posted 30 May 2018
bioRxiv DOI: 10.1101/334706

Calcium imaging has revolutionized systems neuroscience, providing the ability to image large neural populations with single-cell resolution. The resulting datasets are quite large (with scales of TB/hour in some cases), which has presented a barrier to routine open sharing of this data, slowing progress in reproducible research. State of the art methods for analyzing this data are based on non-negative matrix factorization (NMF); these approaches solve a non-convex optimization problem, and are highly effective when good initializations are available, but can break down e.g. in low-SNR settings where common initialization approaches fail. Here we introduce an improved approach to compressing and denoising functional imaging data. The method is based on a spatially-localized penalized matrix decomposition (PMD) of the data to separate (low-dimensional) signal from (temporally-uncorrelated) noise. This approach can be applied in parallel on local spatial patches and is therefore highly scalable, does not impose non-negativity constraints or require stringent identifiability assumptions (leading to significantly more robust results compared to NMF), and estimates all parameters directly from the data, so no hand-tuning is required. We have applied the method to a wide range of functional imaging data (including one-photon, two-photon, three-photon, widefield, somatic, axonal, dendritic, calcium, and voltage imaging datasets): in all cases, we observe ~2-4x increases in SNR and compression rates of 20-300x with minimal visible loss of signal, with no adjustment of hyperparameters; this in turn facilitates the process of demixing the observed activity into contributions from individual neurons. We focus on two challenging applications: dendritic calcium imaging data and voltage imaging data in the context of optogenetic stimulation. In both cases, we show that our new approach leads to faster and much more robust extraction of activity from the video data.

Download data

  • Downloaded 2,603 times
  • Download rankings, all-time:
    • Site-wide: 1,699 out of 73,697
    • In neuroscience: 247 out of 13,250
  • Year to date:
    • Site-wide: 3,836 out of 73,697
  • Since beginning of last month:
    • Site-wide: 3,836 out of 73,697

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)