Rxivist logo

Transcriptional co-regulators, which mediate chromatin-dependent transcriptional signaling, represent tractable targets to modulate tumorigenic gene expression programs with small molecules. Genetic loss-of-function studies have recently implicated the transcriptional co-activator, ENL, as a selective requirement for the survival of acute leukemia and highlighted an essential role for its chromatin reader YEATS domain. Motivated by these discoveries, we executed a screen of nearly 300,000 small molecules and identified an amido-imidazopyridine inhibitor of the ENL YEATS domain (IC50 = 7 M). Leveraging a SuFEx-based high-throughput approach to medicinal chemistry optimization, we discovered SR-0813 (IC50 = 25 nM), a potent and selective ENL/AF9 YEATS domain inhibitor that exclusively inhibits the growth of ENL-dependent leukemia cell lines. Armed with this tool and a first-in-class ENL PROTAC, SR-1114, we detailed the response of AML cells to pharmacological ENL disruption for the first time. Most notably, displacement of ENL from chromatin by SR-0813 elicited a strikingly selective suppression of ENL target genes, including HOXA9/10, MYB, MYC and a number of other leukemia proto-oncogenes. Our study reproduces a number of key observations previously made by CRISPR/Cas9 loss of function and dTAG-mediated degradation, and therefore, both reinforces ENL as an emerging leukemia target and validates SR-0813 as a high-quality chemical probe.

Download data

  • Downloaded 1,039 times
  • Download rankings, all-time:
    • Site-wide: 21,364
    • In cancer biology: 518
  • Year to date:
    • Site-wide: 6,757
  • Since beginning of last month:
    • Site-wide: 11,418

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide