Rxivist logo

BackgroundGenetic, lifestyle, and environmental factors can lead to perturbations in circulating lipid levels and increase risk of cardiovascular and metabolic diseases. However, how changes in individual lipid species contribute to disease risk is often unclear. Moreover, little is known about the role of lipids on cardiovascular disease in Pakistan, a population historically underrepresented in cardiovascular studies. MethodsWe characterised the genetic architecture of the human blood lipidome in 5,662 hospital controls from the Pakistan Risk of Myocardial Infarction Study (PROMIS) and 13,814 healthy British blood donors from the INTERVAL study. We applied a candidate causal gene prioritisation tool to link the genetic variants associated with each lipid to the most likely causal genes, and Gaussian Graphical Modelling network analysis to identify and illustrate relationships between lipids and genetic loci. ResultsWe identified 359 genetic associations with 255 lipids measured using direct infusion high-resolution mass spectrometry in PROMIS, and 616 genetic associations with 326 lipids in INTERVAL. Our analyses revealed new biological insights at genetic loci associated with cardiometabolic diseases, including novel lipid associations at the LPL, MBOAT7, LIPC, APOE-C1-C2-C4, SGPP1, and SPTLC3 loci. ConclusionsOur findings, generated using a distinctive lipidomics platform in an understudied South Asian population, strengthen and expand the knowledge base of the genetic determinants of lipids and their association with cardiometabolic disease-related loci.

Download data

  • Downloaded 361 times
  • Download rankings, all-time:
    • Site-wide: 69,601
    • In genetic and genomic medicine: 208
  • Year to date:
    • Site-wide: 28,502
  • Since beginning of last month:
    • Site-wide: 56,732

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)