Rxivist logo

Estimating epidemiologic dynamics from single cross-sectional viral load distributions

By James A Hay, Lee Kennedy-Shaffer, Sanjat Kanjilal, Marc Lipsitch, Michael J Mina

Posted 13 Oct 2020
medRxiv DOI: 10.1101/2020.10.08.20204222

Virologic testing for SARS-CoV-2 has been central to the COVID-19 pandemic response, but interpreting changes in incidence and fraction of positive tests towards understanding the epidemic trajectory is confounded by changes in testing practices. Here, we show that the distribution of viral loads, in the form of Cycle thresholds (Ct), from positive surveillance samples at a single point in time can provide accurate estimation of an epidemics trajectory, subverting the need for repeated case count measurements which are frequently obscured by changes in testing capacity. We identify a relationship between the population-level cross-sectional distribution of Ct values and the growth rate of the epidemic, demonstrating how the skewness and median of detectable Ct values change purely as a mathematical epidemiologic rule without any change in individual level viral load kinetics or testing. Although at the individual level measurement variation can complicate interpretation of Ct values for clinical use, we show that population-level properties reflect underlying epidemic dynamics. In support of these theoretical findings, we observe a strong relationship between the time-varying effective reproductive number, R(t), and the distribution of Cts among positive surveillance specimens, including median and skewness, measured in Massachusetts over time. We use the observed relationships to derive a novel method that allows accurate inference of epidemic growth rate using the distribution of Ct values observed at a single cross-section in time, which, unlike estimates based on case counts, is less susceptible to biases from delays in test results and from changing testing practices. Our findings suggest that instead of discarding individual Ct values from positive specimens, incorporation of viral loads into public health data streams offers a new approach for real-time resource allocation and assessment of outbreak mitigation strategies, even where repeat incidence data is not available. Ct values or similar viral load data should be regularly reported to public health officials by testing centers and incorporated into monitoring programs.

Download data

  • Downloaded 5,417 times
  • Download rankings, all-time:
    • Site-wide: 2,279
    • In epidemiology: 263
  • Year to date:
    • Site-wide: 1,196
  • Since beginning of last month:
    • Site-wide: 9,282

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide