Rxivist logo

Clinical characteristics of COVID-19 and the model for predicting the occurrence of critically ill patients: a retrospective cohort study.

By Jing Ouyang, Xuefeng Shan, Xin Wang, Xue Zhang, Yaling Chen, Miaomiao Qi, Chao Xia, Dongqing Gu, Yaokai Chen, Ben Zhang

Posted 14 Aug 2020
medRxiv DOI: 10.1101/2020.08.13.20173799

Background: The present study aim to comprehensively report the epidemiological and clinical characteristics of the COVID-19 patients and to develop a multi-feature fusion model for predicting the critical ill probability. Methods: It was a retrospective cohort study that incorporating the laboratory-confirmed COVID-19 patients in the Chongqing Public Health Medical Center. The prediction model was constructed with least absolute shrinkage and selection operator (LASSO) logistic regression method and the model was further tested in the validation cohort. The performance was evaluated by the receiver operating curve (ROC), calibration curve and decision curve analysis (DCA). Results: A total of 217 patients were included in the study. During the treatment, 34 patients were admitted to intensive care unit (ICU) and no developed death. A model incorporating the demographic and clinical characteristics, imaging features and laboratory findings were constructed to predict the critical ill probability and it was proved to have good calibration, discrimination ability and clinic use. Conclusions: The prevalence of critical ill was relatively high and the model may help the clinicians to identify the patients with high risk for developing the critical ill, thus to conduct timely and targeted treatment to reduce the mortality rate.

Download data

  • Downloaded 220 times
  • Download rankings, all-time:
    • Site-wide: 116,960
    • In epidemiology: 4,904
  • Year to date:
    • Site-wide: 78,825
  • Since beginning of last month:
    • Site-wide: None

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide