Rxivist logo

Repeat SARS-CoV-2 Testing Models for Residential College Populations

By Joseph T. Chang, Forrest W. Crawford, Edward H Kaplan

Posted 10 Jul 2020
medRxiv DOI: 10.1101/2020.07.09.20149351

Residential colleges are considering re-opening under uncertain futures regarding the COVID-19 pandemic. We consider repeat SARS-CoV-2 testing models for the purpose of containing outbreaks in the residential campus community. The goal of repeat testing is to detect and isolate new infections rapidly to block transmission that would otherwise occur both on and off campus. The models allow for specification of aspects including scheduled on-campus resident screening at a given frequency, test sensitivity that can depend on the time since infection, imported infections from off campus throughout the school term, and a lag from testing until student isolation due to laboratory turnaround and student relocation delay. For early- (late-) transmission of SARS-CoV-2 by age of infection, we find that weekly screening cannot reliably contain outbreaks with reproductive numbers above 1.4 (1.6) if more than one imported exposure per 10,000 students occurs daily. Screening every three days can contain outbreaks providing the reproductive number remains below 1.75 (2.3) if transmission happens earlier (later) with time from infection, but at the cost of increased false positive rates requiring more isolation quarters for students testing positive. Testing frequently while minimizing the delay from testing until isolation for those found positive are the most controllable levers for preventing large residential college outbreaks. A web app that implements model calculations is available to facilitate exploration and consideration of a variety of scenarios.

Download data

  • Downloaded 1,879 times
  • Download rankings, all-time:
    • Site-wide: 9,371
    • In infectious diseases: 1,288
  • Year to date:
    • Site-wide: 58,316
  • Since beginning of last month:
    • Site-wide: 55,511

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide