Rxivist logo

Understanding temporal dynamics of COVID-19 patient symptoms could provide fine-grained resolution to guide clinical decision-making. Here, we use deep neural networks over an institution-wide platform for the augmented curation of clinical notes from 77,167 patients subjected to COVID-19 PCR testing. By contrasting Electronic Health Record (EHR)-derived symptoms of COVID-19-positive (COVIDpos; n=2,317) versus COVID-19-negative (COVIDneg; n=74,850) patients for the week preceding the PCR testing date, we identify anosmia/dysgeusia (27.1-fold), fever/chills (2.6-fold), respiratory difficulty (2.2-fold), cough (2.2-fold), myalgia/arthralgia (2-fold), and diarrhea (1.4-fold) as significantly amplified in COVIDpos over COVIDneg patients. The combination of cough and fever/chills has 4.2-fold amplification in COVIDpos patients during the week prior to PCR testing, and along with anosmia/dysgeusia, constitutes the earliest EHR-derived signature of COVID-19. This study introduces an Augmented Intelligence platform for the real-time synthesis of institutional biomedical knowledge. The platform holds tremendous potential for scaling up curation throughput, thus enabling EHR-powered early disease diagnosis.

Download data

  • Downloaded 3,213 times
  • Download rankings, all-time:
    • Site-wide: 4,414
    • In infectious diseases: 841
  • Year to date:
    • Site-wide: 18,752
  • Since beginning of last month:
    • Site-wide: 28,136

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide