Rxivist logo

Explicit modeling of ancestry improves polygenic risk scores and BLUP prediction

By Chia-Yen Chen, Jiali Han, David J. Hunter, Peter Kraft, Alkes Price

Posted 03 Dec 2014
bioRxiv DOI: 10.1101/012005 (published DOI: 10.1002/gepi.21906)

Polygenic prediction using genome-wide SNPs can provide high prediction accuracy for complex traits. Here, we investigate the question of how to account for genetic ancestry when conducting polygenic prediction. We show that the accuracy of polygenic prediction in structured populations may be partly due to genetic ancestry. However, we hypothesized that explicitly modeling ancestry could improve polygenic prediction accuracy. We analyzed three GWAS of hair color, tanning ability and basal cell carcinoma (BCC) in European Americans (sample size from 7,440 to 9,822) and considered two widely used polygenic prediction approaches: polygenic risk scores (PRS) and Best Linear Unbiased Prediction (BLUP). We compared polygenic prediction without correction for ancestry to polygenic prediction with ancestry as a separate component in the model. In 10-fold cross-validation using the PRS approach, the R2 for hair color increased by 66% (0.0456 to 0.0755; p<10-16), the R2 for tanning ability increased by 123% (0.0154 to 0.0344; p<10-16) and the liability-scale R2 for BCC increased by 68% (0.0138 to 0.0232; p<10-16) when explicitly modeling ancestry, which prevents ancestry effects from entering into each SNP effect and being over-weighted. Surprisingly, explicitly modeling ancestry produces a similar improvement when using the BLUP approach, which fits all SNPs simultaneously in a single variance component and causes ancestry to be under-weighted. We validate our findings via simulations, which show that the differences in prediction accuracy will increase in magnitude as sample sizes increase. In summary, our results show that explicitly modeling ancestry can be important in both PRS and BLUP prediction.

Download data

  • Downloaded 612 times
  • Download rankings, all-time:
    • Site-wide: 59,425
    • In genetics: 2,475
  • Year to date:
    • Site-wide: 140,909
  • Since beginning of last month:
    • Site-wide: 103,563

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide