Rxivist logo

Rxivist combines preprints from bioRxiv with data from Twitter to help you find the papers being discussed in your field. Currently indexing 94,912 bioRxiv papers from 404,161 authors.

Most downloaded bioRxiv papers, all time

93,223 results found. For more information, click each entry to expand.

1: Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag
more details view paper

Posted to bioRxiv 31 Jan 2020

Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag
962,296 downloads evolutionary biology

Prashant Pradhan, Ashutosh Kumar Pandey, Akhilesh Mishra, Parul Gupta, Praveen Kumar Tripathi, Manoj Balakrishnan Menon, James Gomes, Perumal Vivekanandan, Bishwajit Kundu

This paper has been withdrawn by its authors. They intend to revise it in response to comments received from the research community on their technical approach and their interpretation of the results. If you have any questions, please contact the corresponding author.

2: Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin
more details view paper

Posted to bioRxiv 23 Jan 2020

Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin
271,960 downloads microbiology

Peng Zhou, Xing-Lou Yang, Xian-Guang Wang, Ben Hu, Lei Zhang, Wei Zhang, Hao-Rui Si, Yan Zhu, Bei Li, Chao-Lin Huang, Hui-Dong Chen, Jing Chen, Yun Luo, Hua Guo, Ren-Di Jiang, Mei-Qin Liu, Ying Chen, Xu-Rui Shen, Xi Wang, Xiao-Shuang Zheng, Kai Zhao, Quan-Jiao Chen, Fei Deng, Lin-Lin Liu, Bing Yan, Fa-Xian Zhan, Yan-Yi Wang, Gengfu Xiao, Zheng-Li Shi

Since the SARS outbreak 18 years ago, a large number of severe acute respiratory syndrome related coronaviruses (SARSr-CoV) have been discovered in their natural reservoir host, bats. Previous studies indicated that some of those bat SARSr-CoVs have the potential to infect humans. Here we report the identification and characterization of a novel coronavirus (nCoV-2019) which caused an epidemic of acute respiratory syndrome in humans, in Wuhan, China. The epidemic, started from December 12th, 2019, has caused 198 laboratory confirmed infections with three fatal cases by January 20th, 2020. Full-length genome sequences were obtained from five patients at the early stage of the outbreak. They are almost identical to each other and share 79.5% sequence identify to SARS-CoV. Furthermore, it was found that nCoV-2019 is 96% identical at the whole genome level to a bat coronavirus. The pairwise protein sequence analysis of seven conserved non-structural proteins show that this virus belongs to the species of SARSr-CoV. The nCoV-2019 virus was then isolated from the bronchoalveolar lavage fluid of a critically ill patient, which can be neutralized by sera from several patients. Importantly, we have confirmed that this novel CoV uses the same cell entry receptor, ACE2, as SARS-CoV.

3: Report of Partial findings from the National Toxicology Program Carcinogenesis Studies of Cell Phone Radiofrequency Radiation in Hsd: Sprague Dawley® SD rats (Whole Body Exposure)
more details view paper

Posted to bioRxiv 26 May 2016

Report of Partial findings from the National Toxicology Program Carcinogenesis Studies of Cell Phone Radiofrequency Radiation in Hsd: Sprague Dawley® SD rats (Whole Body Exposure)
262,892 downloads cancer biology

Michael Wyde, Mark Cesta, Chad Blystone, Susan Elmore, Paul Foster, Michelle Hooth, Grace Kissling, David Malarkey, Robert Sills, Matthew Stout, Nigel Walker, Kristine Witt, Mary Wolfe, John Bucher

The U.S. National Toxicology Program (NTP) has carried out extensive rodent toxicology and carcinogenesis studies of radiofrequency radiation (RFR) at frequencies and modulations used in the U.S. telecommunications industry. This report presents partial findings from these studies. The occurrences of two tumor types in male Harlan Sprague Dawley rats exposed to RFR, malignant gliomas in the brain and schwannomas of the heart, were considered of particular interest and are the subject of this report. The findings in this report were reviewed by expert peer reviewers selected by the NTP and National Institutes of Health (NIH). These reviews and responses to comments are included as appendices to this report, and revisions to the current document have incorporated and addressed these comments. When the studies are completed, they will undergo additional peer review before publication in full as part of the NTP's Toxicology and Carcinogenesis Technical Reports Series. No portion of this work has been submitted for publication in a scientific journal. Supplemental information in the form of four additional manuscripts has or will soon be submitted for publication. These manuscripts describe in detail the designs and performance of the RFR exposure system, the dosimetry of RFR exposures in rats and mice, the results to a series of pilot studies establishing the ability of the animals to thermoregulate during RFR exposures, and studies of DNA damage. (1) Capstick M, Kuster N, Kuhn S, Berdinas-Torres V, Wilson P, Ladbury J, Koepke G, McCormick D, Gauger J, and Melnick R. A radio frequency radiation reverberation chamber exposure system for rodents; (2) Yijian G, Capstick M, McCormick D, Gauger J, Horn T, Wilson P, Melnick RL, and Kuster N. Life time dosimetric assessment for mice and rats exposed to cell phone radiation; (3) Wyde ME, Horn TL, Capstick M, Ladbury J, Koepke G, Wilson P, Stout MD, Kuster N, Melnick R, Bucher JR, and McCormick D. Pilot studies of the National Toxicology Program's cell phone radiofrequency radiation reverberation chamber exposure system; (4) Smith-Roe SL, Wyde ME, Stout MD, Winters J, Hobbs CA, Shepard KG, Green A, Kissling GE, Tice RR, Bucher JR, and Witt KL. Evaluation of the genotoxicity of cell phone radiofrequency radiation in male and female rats and mice following subchronic exposure.

4: Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2
more details view paper

Posted to bioRxiv 30 Apr 2020

Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2
219,628 downloads evolutionary biology

B Korber, WM Fischer, S Gnanakaran, H Yoon, J Theiler, W Abfalterer, B Foley, EE Giorgi, T Bhattacharya, MD Parker, DG Partridge, CM Evans, TM Freeman, TI de Silva, on behalf of the Sheffield COVID-19 Genomics Group, CC LaBranche, DC Montefiori

We have developed an analysis pipeline to facilitate real-time mutation tracking in SARS-CoV-2, focusing initially on the Spike (S) protein because it mediates infection of human cells and is the target of most vaccine strategies and antibody-based therapeutics. To date we have identified fourteen mutations in Spike that are accumulating. Mutations are considered in a broader phylogenetic context, geographically, and over time, to provide an early warning system to reveal mutations that may confer selective advantages in transmission or resistance to interventions. Each one is evaluated for evidence of positive selection, and the implications of the mutation are explored through structural modeling. The mutation Spike D614G is of urgent concern; after beginning to spread in Europe in early February, when introduced to new regions it repeatedly and rapidly becomes the dominant form. Also, we present evidence of recombination between locally circulating strains, indicative of multiple strain infections. These finding have important implications for SARS-CoV-2 transmission, pathogenesis and immune interventions. ### Competing Interest Statement The authors have declared no competing interest.

5: A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing
more details view paper

Posted to bioRxiv 22 Mar 2020

A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing
164,766 downloads systems biology

David E Gordon, Gwendolyn M. Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Matthew J. O’Meara, Jeffrey Z. Guo, Danielle L. Swaney, Tia A Tummino, Ruth Huettenhain, Robyn M. Kaake, Alicia L. Richards, Beril Tutuncuoglu, Helene Foussard, Jyoti Batra, Kelsey Haas, Maya Modak, Minkyu Kim, Paige Haas, Benjamin J. Polacco, Hannes Braberg, Jacqueline M. Fabius, Manon Eckhardt, Margaret Soucheray, Melanie J. Bennett, Merve Cakir, Michael J. McGregor, Qiongyu Li, Zun Zar Chi Naing, Yuan Zhou, Shiming Peng, Ilsa T. Kirby, James E. Melnyk, John S. Chorba, Kevin Lou, Shizhong A. Dai, Wenqi Shen, Ying Shi, Ziyang Zhang, Inigo Barrio-Hernandez, Danish Memon, Claudia Hernandez-Armenta, Christopher J.P. Mathy, Tina Perica, Kala B. Pilla, Sai J. Ganesan, Daniel J. Saltzberg, Rakesh Ramachandran, Xi Liu, Sara B. Rosenthal, Lorenzo Calviello, Srivats Venkataramanan, Jose Liboy-Lugo, Yizhu Lin, Stephanie A. Wankowicz, Markus Bohn, Phillip P. Sharp, Raphael Trenker, Janet M. Young, Devin A. Cavero, Joseph Hiatt, Theodore L. Roth, Ujjwal Rathore, Advait Subramanian, Julia Noack, Mathieu Hubert, Ferdinand Roesch, Thomas Vallet, Björn Meyer, Kris M. White, Lisa Miorin, Oren S. Rosenberg, Kliment A Verba, David A. Agard, Melanie Ott, Michael Emerman, Davide Ruggero, Adolfo García-Sastre, Natalia Jura, Mark von Zastrow, Jack Taunton, Alan Ashworth, Olivier Schwartz, Marco Vignuzzi, Christophe d’Enfert, Shaeri Mukherjee, Matt Jacobson, Harmit S. Malik, Danica Galonić Fujimori, Trey Ideker, Charles S. Craik, Jennifer A. Doudna, James S Fraser, John D. Gross, Andrej Sali, Tanja Kortemme, Pedro Beltrao, Kevan Shokat, Brian K. Shoichet, Nevan J. Krogan

An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption[1][1],[2][2]. There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection. To illuminate this, we cloned, tagged and expressed 26 of the 29 viral proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), which identified 332 high confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 67 druggable human proteins or host factors targeted by 69 existing FDA-approved drugs, drugs in clinical trials and/or preclinical compounds, that we are currently evaluating for efficacy in live SARS-CoV-2 infection assays. The identification of host dependency factors mediating virus infection may provide key insights into effective molecular targets for developing broadly acting antiviral therapeutics against SARS-CoV-2 and other deadly coronavirus strains. * HC-PPIs : High confidence protein-protein interactions PPIs : protein-protein interaction AP-MS : affinity purification-mass spectrometry COVID-19 : Coronavirus Disease-2019 ACE2 : angiotensin converting enzyme 2 Orf : open reading frame Nsp3 : papain-like protease Nsp5 : main protease Nsp : nonstructural protein TPM : transcripts per million [1]: #ref-1 [2]: #ref-2

6: An integrated brain-machine interface platform with thousands of channels
more details view paper

Posted to bioRxiv 17 Jul 2019

An integrated brain-machine interface platform with thousands of channels
160,821 downloads neuroscience

Elon Musk, Neuralink

Brain-machine interfaces (BMIs) hold promise for the restoration of sensory and motor function and the treatment of neurological disorders, but clinical BMIs have not yet been widely adopted, in part because modest channel counts have limited their potential. In this white paper, we describe Neuralink’s first steps toward a scalable high-bandwidth BMI system. We have built arrays of small and flexible electrode “threads”, with as many as 3,072 electrodes per array distributed across 96 threads. We have also built a neurosurgical robot capable of inserting six threads (192 electrodes) per minute. Each thread can be individually inserted into the brain with micron precision for avoidance of surface vasculature and targeting specific brain regions. The electrode array is packaged into a small implantable device that contains custom chips for low-power on-board amplification and digitization: the package for 3,072 channels occupies less than (23 × 18.5 × 2) mm3. A single USB-C cable provides full-bandwidth data streaming from the device, recording from all channels simultaneously. This system has achieved a spiking yield of up to 70% in chronically implanted electrodes. Neuralink’s approach to BMI has unprecedented packaging density and scalability in a clinically relevant package.

7: Deep image reconstruction from human brain activity
more details view paper

Posted to bioRxiv 28 Dec 2017

Deep image reconstruction from human brain activity
128,718 downloads neuroscience

Guohua Shen, Tomoyasu Horikawa, Kei Majima, Yukiyasu Kamitani

Machine learning-based analysis of human functional magnetic resonance imaging (fMRI) patterns has enabled the visualization of perceptual content. However, it has been limited to the reconstruction with low-level image bases or to the matching to exemplars. Recent work showed that visual cortical activity can be decoded (translated) into hierarchical features of a deep neural network (DNN) for the same input image, providing a way to make use of the information from hierarchical visual features. Here, we present a novel image reconstruction method, in which the pixel values of an image are optimized to make its DNN features similar to those decoded from human brain activity at multiple layers. We found that the generated images resembled the stimulus images (both natural images and artificial shapes) and the subjective visual content during imagery. While our model was solely trained with natural images, our method successfully generalized the reconstruction to artificial shapes, indicating that our model indeed reconstructs or generates images from brain activity, not simply matches to exemplars. A natural image prior introduced by another deep neural network effectively rendered semantically meaningful details to reconstructions by constraining reconstructed images to be similar to natural images. Furthermore, human judgment of reconstructions suggests the effectiveness of combining multiple DNN layers to enhance visual quality of generated images. The results suggest that hierarchical visual information in the brain can be effectively combined to reconstruct perceptual and subjective images.

8: Could a neuroscientist understand a microprocessor?
more details view paper

Posted to bioRxiv 26 May 2016

Could a neuroscientist understand a microprocessor?
102,479 downloads neuroscience

Eric Jonas, Konrad P. Kording

There is a popular belief in neuroscience that we are primarily data limited, and that producing large, multimodal, and complex datasets will, with the help of advanced data analysis algorithms, lead to fundamental insights into the way the brain processes information. These datasets do not yet exist, and if they did we would have no way of evaluating whether or not the algorithmically-generated insights were sufficient or even correct. To address this, here we take a classical microprocessor as a model organism, and use our ability to perform arbitrary experiments on it to see if popular data analysis methods from neuroscience can elucidate the way it processes information. Microprocessors are among those artificial information processing systems that are both complex and that we understand at all levels, from the overall logical flow, via logical gates, to the dynamics of transistors. We show that the approaches reveal interesting structure in the data but do not meaningfully describe the hierarchy of information processing in the microprocessor. This suggests current analytic approaches in neuroscience may fall short of producing meaningful understanding of neural systems, regardless of the amount of data. Additionally, we argue for scientists using complex non-linear dynamical systems with known ground truth, such as the microprocessor as a validation platform for time-series and structure discovery methods.

9: A human monoclonal 1 antibody blocking SARS-CoV-2 infection
more details view paper

Posted to bioRxiv 12 Mar 2020

A human monoclonal 1 antibody blocking SARS-CoV-2 infection
102,134 downloads microbiology

Chunyan Wang, Wentao Li, Dubravka Drabek, Nisreen M.A. Okba, Rien van Haperen, Albert D.M.E. Osterhaus, Frank J.M. van Kuppeveld, Bart L. Haagmans, Frank Grosveld, Berend-Jan Bosch

The emergence of the novel human coronavirus SARS-CoV-2 in Wuhan, China has caused a worldwide epidemic of respiratory disease (COVID-19). Vaccines and targeted therapeutics for treatment of this disease are currently lacking. Here we report a human monoclonal antibody that neutralizes SARS-CoV-2 (and SARS-CoV). This cross-neutralizing antibody targets a communal epitope on these viruses and offers potential for prevention and treatment of COVID-19.

10: Susceptibility of ferrets, cats, dogs, and different domestic animals to SARS-coronavirus-2
more details view paper

Posted to bioRxiv 31 Mar 2020

Susceptibility of ferrets, cats, dogs, and different domestic animals to SARS-coronavirus-2
98,929 downloads microbiology

Jianzhong Shi, Zhiyuan Wen, Gongxun Zhong, Huanliang Yang, Chong Wang, Renqiang Liu, Xijun He, Lei Shuai, Ziruo Sun, Yubo Zhao, Libin Liang, Pengfei Cui, Jinliang Wang, Xianfeng Zhang, Yuntao Guan, Hualan Chen, Zhigao Bu

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the infectious disease COVID-19, which was first reported in Wuhan, China in December, 2019. Despite the tremendous efforts to control the disease, COVID-19 has now spread to over 100 countries and caused a global pandemic. SARS-CoV-2 is thought to have originated in bats; however, the intermediate animal sources of the virus are completely unknown. Here, we investigated the susceptibility of ferrets and animals in close contact with humans to SARS-CoV-2. We found that SARS-CoV-2 replicates poorly in dogs, pigs, chickens, and ducks, but efficiently in ferrets and cats. We found that the virus transmits in cats via respiratory droplets. Our study provides important insights into the animal reservoirs of SARS-CoV-2 and animal management for COVID-19 control.

11: Reversing age: dual species measurement of epigenetic age with a single clock
more details view paper

Posted to bioRxiv 08 May 2020

Reversing age: dual species measurement of epigenetic age with a single clock
98,467 downloads developmental biology

Steve Horvath, Kavita Singh, Ken Raj, Shraddha Khairnar, Akshay Sanghavi, Agnivesh Shrivastava, Joseph A. Zoller, Caesar Z Li, Claudia B. Herenu, Martina Canatelli-Mallat, Marianne Lehmann, Leah C. Solberg Woods, Angel Garcia Martinez, Tengfei Wang, Priscila Chiavellini, Andrew J. Levine, Hao Chen, Rodolfo G Goya, Harold L Katcher

Young blood plasma is known to confer beneficial effects on various organs in mice. However, it was not known whether young plasma rejuvenates cells and tissues at the epigenetic level; whether it alters the epigenetic clock, which is a highly-accurate molecular biomarker of aging. To address this question, we developed and validated six different epigenetic clocks for rat tissues that are based on DNA methylation values derived from n=593 tissue samples. As indicated by their respective names, the rat pan-tissue clock can be applied to DNA methylation profiles from all rat tissues, while the rat brain-, liver-, and blood clocks apply to the corresponding tissue types. We also developed two epigenetic clocks that apply to both human and rat tissues by adding n=850 human tissue samples to the training data. We employed these six clocks to investigate the rejuvenation effects of a plasma fraction treatment in different rat tissues. The treatment more than halved the epigenetic ages of blood, heart, and liver tissue. A less pronounced, but statistically significant, rejuvenation effect could be observed in the hypothalamus. The treatment was accompanied by progressive improvement in the function of these organs as ascertained through numerous biochemical/physiological biomarkers and behavioral responses to assess cognitive functions. Cellular senescence, which is not associated with epigenetic aging, was also considerably reduced in vital organs. Overall, this study demonstrates that a plasma-derived treatment markedly reverses aging according to epigenetic clocks and benchmark biomarkers of aging. ### Competing Interest Statement Several authors are founders, owners, employees (Harold Katcher and Akshay Sanghavi) or consultants of Nugenics Research (Steve Horvath and Agnivesh Shrivastava) which plans to commercialize the "Elixir" treatment. Other authors (Kavita Singh, Shraddha Khairnar) received financial support from Nugenics Research. The other authors do not have conflict of interest.

12: The Genomic Formation of South and Central Asia
more details view paper

Posted to bioRxiv 31 Mar 2018

The Genomic Formation of South and Central Asia
93,570 downloads genomics

Vagheesh M. Narasimhan, Nick Patterson, Priya Moorjani, Iosif Lazaridis, Mark Lipson, Swapan Mallick, Nadin Rohland, Rebecca Bernardos, Alexander M Kim, Nathan Nakatsuka, Iñigo Olalde, Alfredo Coppa, James Mallory, Vyacheslav Moiseyev, Janet Monge, Luca M Olivieri, Nicole Adamski, Nasreen Broomandkhoshbacht, Francesca Candilio, Olivia Cheronet, Brendan J Culleton, Matthew Ferry, Daniel M. Fernandes, Beatriz Gamarra, Daniel Gaudio, Mateja Hajdinjak, Éadaoin Harney, Thomas K Harper, Denise Keating, Ann Marie Lawson, Megan Michel, Mario Novak, Jonas Oppenheimer, Niraj Rai, Kendra Sirak, Viviane Slon, Kristin Stewardson, Zhao Zhang, Gaziz Akhatov, Anatoly N Bagashev, Bauryzhan Baitanayev, Gian Luca Bonora, Tatiana Chikisheva, Anatoly Derevianko, Enshin Dmitry, Katerina Douka, Nadezhda Dubova, Andrey Epimakhov, Suzanne Freilich, Dorian Fuller, Alexander Goryachev, Andrey Gromov, Bryan Hanks, Margaret Judd, Erlan Kazizov, Aleksander Khokhlov, Egor Kitov, Elena Kupriyanova, Pavel Kuznetsov, Donata Luiselli, Farhod Maksudov, Christopher Meiklejohn, Deborah Merrett, Roberto Micheli, Oleg Mochalov, Zahir Muhammed, Samariddin Mustafokulov, Ayushi Nayak, Rykun M Petrovna, Davide Pettener, Richard Potts, Dmitry Razhev, Stefania Sarno, Kulyan Sikhymbaeva, Sergey M Slepchenko, Nadezhda Stepanova, Svetlana Svyatko, Sergey Vasilyev, Massimo Vidale, Dmitriy Voyakin, Antonina Yermolayeva, Alisa Zubova, Vasant S Shinde, Carles Lalueza-Fox, Matthias Meyer, David Anthony, Nicole Boivin, Kumarasamy Thangaraj, Douglas J. Kennett, Michael Frachetti, Ron Pinhasi, David Reich

The genetic formation of Central and South Asian populations has been unclear because of an absence of ancient DNA. To address this gap, we generated genome-wide data from 362 ancient individuals, including the first from eastern Iran, Turan (Uzbekistan, Turkmenistan, and Tajikistan), Bronze Age Kazakhstan, and South Asia. Our data reveal a complex set of genetic sources that ultimately combined to form the ancestry of South Asians today. We document a southward spread of genetic ancestry from the Eurasian Steppe, correlating with the archaeologically known expansion of pastoralist sites from the Steppe to Turan in the Middle Bronze Age (2300-1500 BCE). These Steppe communities mixed genetically with peoples of the Bactria Margiana Archaeological Complex (BMAC) whom they encountered in Turan (primarily descendants of earlier agriculturalists of Iran), but there is no evidence that the main BMAC population contributed genetically to later South Asians. Instead, Steppe communities integrated farther south throughout the 2nd millennium BCE, and we show that they mixed with a more southern population that we document at multiple sites as outlier individuals exhibiting a distinctive mixture of ancestry related to Iranian agriculturalists and South Asian hunter-gathers. We call this group Indus Periphery because they were found at sites in cultural contact with the Indus Valley Civilization (IVC) and along its northern fringe, and also because they were genetically similar to post-IVC groups in the Swat Valley of Pakistan. By co-analyzing ancient DNA and genomic data from diverse present-day South Asians, we show that Indus Periphery-related people are the single most important source of ancestry in South Asia — consistent with the idea that the Indus Periphery individuals are providing us with the first direct look at the ancestry of peoples of the IVC — and we develop a model for the formation of present-day South Asians in terms of the temporally and geographically proximate sources of Indus Periphery-related, Steppe, and local South Asian hunter-gatherer-related ancestry. Our results show how ancestry from the Steppe genetically linked Europe and South Asia in the Bronze Age, and identifies the populations that almost certainly were responsible for spreading Indo-European languages across much of Eurasia.

13: Severe acute respiratory syndrome-related coronavirus – The species and its viruses, a statement of the Coronavirus Study Group
more details view paper

Posted to bioRxiv 11 Feb 2020

Severe acute respiratory syndrome-related coronavirus – The species and its viruses, a statement of the Coronavirus Study Group
92,516 downloads microbiology

Alexander E. Gorbalenya, Susan C. Baker, Ralph S. Baric, Raoul J. de Groot, Christian Drosten, Anastasia A. Gulyaeva, Bart L. Haagmans, Chris Lauber, Andrey M Leontovich, Benjamin W Neuman, Dmitry Penzar, Stanley Perlman, Leo L.M. Poon, Dmitry Samborskiy, Igor A. Sidorov, Isabel Sola, John Ziebuhr

The present outbreak of lower respiratory tract infections, including respiratory distress syndrome, is the third spillover, in only two decades, of an animal coronavirus to humans resulting in a major epidemic. Here, the Coronavirus Study Group (CSG) of the International Committee on Taxonomy of Viruses, which is responsible for developing the official classification of viruses and taxa naming (taxonomy) of the Coronaviridae family, assessed the novelty of the human pathogen tentatively named 2019-nCoV. Based on phylogeny, taxonomy and established practice, the CSG formally recognizes this virus as a sister to severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus and designates it as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To facilitate communication, the CSG further proposes to use the following naming convention for individual isolates: SARS-CoV-2/Isolate/Host/Date/Location. The spectrum of clinical manifestations associated with SARS-CoV-2 infections in humans remains to be determined. The independent zoonotic transmission of SARS-CoV and SARS-CoV-2 highlights the need for studying the entire (virus) species to complement research focused on individual pathogenic viruses of immediate significance. This research will improve our understanding of virus-host interactions in an ever-changing environment and enhance our preparedness for future outbreaks.

14: ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques
more details view paper

Posted to bioRxiv 13 May 2020

ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques
86,680 downloads microbiology

Neeltje van Doremalen, Teresa Lambe, Alexandra Spencer, Sandra Belij-Rammerstorfer, Jyothi N. Purushotham, Julia R. Port, Victoria Avanzato, Trenton Bushmaker, Amy Flaxman, Marta Ulaszewska, Friederike Feldmann, Elizabeth R. Allen, Hannah Sharpe, Jonathan Schulz, Myndi Holbrook, Atsushi Okumura, Kimberly Meade-White, Lizzette Pérez-Pérez, Cameron Bissett, Ciaran Gilbride, Brandi N. Williamson, Rebecca Rosenke, Dan Long, Alka Ishwarbhai, Reshma Kailath, Louisa Rose, Susan Morris, Claire Powers, Jamie Lovaglio, Patrick W. Hanley, Dana Scott, Greg Saturday, Emmie de Wit, Sarah C. Gilbert, Vincent J. Munster

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in December 20191,2 and is responsible for the COVID-19 pandemic3. Vaccines are an essential countermeasure urgently needed to control the pandemic4. Here, we show that the adenovirus-vectored vaccine ChAdOx1 nCoV-19, encoding the spike protein of SARS-CoV-2, is immunogenic in mice, eliciting a robust humoral and cell-mediated response. This response was not Th2 dominated, as demonstrated by IgG subclass and cytokine expression profiling. A single vaccination with ChAdOx1 nCoV-19 induced a humoral and cellular immune response in rhesus macaques. We observed a significantly reduced viral load in bronchoalveolar lavage fluid and respiratory tract tissue of vaccinated animals challenged with SARS-CoV-2 compared with control animals, and no pneumonia was observed in vaccinated rhesus macaques. Importantly, no evidence of immune-enhanced disease following viral challenge in vaccinated animals was observed. ChAdOx1 nCoV-19 is currently under investigation in a phase I clinical trial. Safety, immunogenicity and efficacy against symptomatic PCR-positive COVID-19 disease will now be assessed in randomised controlled human clinical trials. ### Competing Interest Statement SCG is a board member of Vaccitech and named as an inventor on a patent covering use of ChAdOx1-vectored vaccines and a patent application covering a SARS-CoV-2 (nCoV-19) vaccine. Teresa Lambe is named as an inventor on a patent application covering a SARS-CoV-2 (nCoV-19) vaccine. The remaining authors declare no competing interests.

15: Comparative analyses of SAR-CoV2 genomes from different geographical locations and other coronavirus family genomes reveals unique features potentially consequential to host-virus interaction and pathogenesis
more details view paper

Posted to bioRxiv 21 Mar 2020

Comparative analyses of SAR-CoV2 genomes from different geographical locations and other coronavirus family genomes reveals unique features potentially consequential to host-virus interaction and pathogenesis
82,814 downloads bioinformatics

Rahila Sardar, Deepshikha Satish, Shweta Birla, Dinesh Gupta

The ongoing pandemic of the coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). We have performed an integrated sequence-based analysis of SARS-CoV2 genomes from different geographical locations in order to identify its unique features absent in SARS-CoV and other related coronavirus family genomes, conferring unique infection, facilitation of transmission, virulence and immunogenic features to the virus. The phylogeny of the genomes yields some interesting results. Systematic gene level mutational analysis of the genomes has enabled us to identify several unique features of the SARS-CoV2 genome, which includes a unique mutation in the spike surface glycoprotein (A930V (24351C>T)) in the Indian SARS-CoV2, absent in other strains studied here. We have also predicted the impact of the mutations in the spike glycoprotein function and stability, using computational approach. To gain further insights into host responses to viral infection, we predict that antiviral host-miRNAs may be controlling the viral pathogenesis. Our analysis reveals nine host miRNAs which can potentially target SARS-CoV2 genes. Interestingly, the nine miRNAs do not have targets in SARS and MERS genomes. Also, hsa-miR-27b is the only unique miRNA which has a target gene in the Indian SARS-CoV2 genome. We also predicted immune epitopes in the genomes.

16: Rapid development of an inactivated vaccine for SARS-CoV-2
more details view paper

Posted to bioRxiv 19 Apr 2020

Rapid development of an inactivated vaccine for SARS-CoV-2
80,940 downloads microbiology

Qiang Gao, Linlin Bao, Haiyan Mao, Lin Wang, Kangwei Xu, Minnan Yang, Yajing Li, Ling Zhu, Nan Wang, Zhe Lv, Hong Gao, Xiaoqin Ge, Biao Kan, Yaling Hu, Jiangning Liu, Fang Cai, Deyu Jiang, Yanhui Yin, Chengfeng Qin, Jing Li, Xuejie Gong, Xiuyu Lou, Wen Shi, Dongdong Wu, Hengming Zhang, Lang Zhu, Wei Deng, Yurong Li, Jinxing Lu, Changgui Li, Xiangxi Wang, Weidong Yin, Yanjun Zhang, Chuan Qin

The COVID-19 caused by SARS-CoV-2 has brought about an unprecedented crisis, taking a heavy toll on human health, lives as well as the global economy. There are no SARS-CoV-2-specific treatments or vaccines available due to the novelty of this virus. Hence, rapid development of effective vaccines against SARS-CoV-2 is urgently needed. Here we developed a pilot-scale production of a purified inactivated SARS-CoV-2 virus vaccine candidate (PiCoVacc), which induced SARS-CoV-2-specific neutralizing antibodies in mice, rats and non-human primates. These antibodies potently neutralized 10 representative SARS-CoV-2 strains, indicative of a possible broader neutralizing ability against SARS-CoV-2 strains circulating worldwide. Immunization with two different doses (3 μg or 6 μg per dose) provided partial or complete protection in macaques against SARS-CoV-2 challenge, respectively, without any antibody-dependent enhancement of infection. Systematic evaluation of PiCoVacc via monitoring clinical signs, hematological and biochemical index, and histophathological analysis in macaques suggests that it is safe. These data support the rapid clinical development of SARS-CoV-2 vaccines for humans. ### Competing Interest Statement The authors have declared no competing interest.

17: Ten simple rules for structuring papers
more details view paper

Posted to bioRxiv 28 Nov 2016

Ten simple rules for structuring papers
73,629 downloads scientific communication and education

Brett Mensh, Konrad P. Kording

Good scientific writing is essential to career development and to the progress of science. A well-structured manuscript allows readers and reviewers to get excited about the subject matter, to understand and verify the paper's contributions, and to integrate these contributions into a broader context. However, many scientists struggle with producing high-quality manuscripts and typically get little training in paper writing. Focusing on how readers consume information, we present a set of 10 simple rules to help you get across the main idea of your paper. These rules are designed to make your paper more influential and the process of writing more efficient and pleasurable.

18: Lack of Reinfection in Rhesus Macaques Infected with SARS-CoV-2
more details view paper

Posted to bioRxiv 14 Mar 2020

Lack of Reinfection in Rhesus Macaques Infected with SARS-CoV-2
73,290 downloads microbiology

Linlin Bao, Wei Deng, Hong Gao, Chong Xiao, Jiayi Liu, Jing Xue, Qi Lv, Jiangning Liu, Pin Yu, Yanfeng Xu, Feifei Qi, Yajin Qu, Fengdi Li, Zhiguang Xiang, Haisheng Yu, Shuran Gong, Mingya Liu, Guanpeng Wang, Shunyi Wang, Zhiqi Song, Ying Liu, Wenjie Zhao, Yunlin Han, Linna Zhao, Xing Liu, Qiang Wei, Chuan Qin

A global pandemic of Corona Virus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is ongoing spread. It remains unclear whether the convalescing patients have a risk of reinfection. Rhesus macaques were rechallenged with SARS-CoV-2 during an early recovery phase from initial infection characterized by weight loss, interstitial pneumonia and systemic viral dissemination mainly in respiratory and gastrointestinal tracts. The monkeys rechallenged with the identical SARS-CoV-2 strain have failed to produce detectable viral dissemination, clinical manifestations and histopathological changes. A notably enhanced neutralizing antibody response might contribute the protection of rhesus macaques from the reinfection by SARS-CoV-2. Our results indicated that primary SARS-CoV-2 infection protects from subsequent reinfection. ### Competing Interest Statement The authors have declared no competing interest.

19: Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19
more details view paper

Posted to bioRxiv 29 Jun 2020

Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19
68,432 downloads immunology

Takuya Sekine, André Perez-Potti, Olga Rivera-Ballesteros, Kristoffer Strålin, Jean-Baptiste Gorin, Annika Olsson, Sian Llewellyn-Lacey, Habiba Kamal, Gordana Bogdanovic, Sandra Muschiol, David J. Wullimann, Tobias Kammann, Johanna Emgård, Tiphaine Parrot, Elin Folkesson, Olav Rooyackers, Lars I Eriksson, Anders Sönnerborg, Tobias Allander, Jan Albert, Morten Nielsen, Jonas Klingström, Sara Gredmark-Russ, Niklas K Björkström, Johan K. Sandberg, David A. Price, Hans-Gustaf Ljunggren, Soo Aleman, Marcus Buggert, Karolinska COVID-19 Study Group

SARS-CoV-2-specific memory T cells will likely prove critical for long-term immune protection against COVID-19. We systematically mapped the functional and phenotypic landscape of SARS-CoV-2-specific T cell responses in a large cohort of unexposed individuals as well as exposed family members and individuals with acute or convalescent COVID-19. Acute phase SARS-CoV-2-specific T cells displayed a highly activated cytotoxic phenotype that correlated with various clinical markers of disease severity, whereas convalescent phase SARS-CoV-2-specific T cells were polyfunctional and displayed a stem-like memory phenotype. Importantly, SARS-CoV-2-specific T cells were detectable in antibody-seronegative family members and individuals with a history of asymptomatic or mild COVID-19. Our collective dataset shows that SARS-CoV-2 elicits robust memory T cell responses akin to those observed in the context of successful vaccines, suggesting that natural exposure or infection may prevent recurrent episodes of severe COVID-19 also in seronegative individuals. ### Competing Interest Statement The authors have declared no competing interest.

20: Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2
more details view paper

Posted to bioRxiv 26 Jan 2020

Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2
61,376 downloads bioinformatics

Yu Zhao, Zixian Zhao, Yujia Wang, Yueqing Zhou, Yu Ma, Wei Zuo

A novel coronavirus SARS-CoV-2 was identified in Wuhan, Hubei Province, China in December of 2019. According to WHO report, this new coronavirus has resulted in 76,392 confirmed infections and 2,348 deaths in China by 22 February, 2020, with additional patients being identified in a rapidly growing number internationally. SARS-CoV-2 was reported to share the same receptor, Angiotensin-converting enzyme 2 (ACE2), with SARS-CoV. Here based on the public database and the state-of-the-art single-cell RNA-Seq technique, we analyzed the ACE2 RNA expression profile in the normal human lungs. The result indicates that the ACE2 virus receptor expression is concentrated in a small population of type II alveolar cells (AT2). Surprisingly, we found that this population of ACE2-expressing AT2 also highly expressed many other genes that positively regulating viral entry, reproduction and transmission. This study provides a biological background for the epidemic investigation of the COVID-19, and could be informative for future anti-ACE2 therapeutic strategy development. ### Competing Interest Statement The authors have declared no competing interest.

Previous page 1 2 3 4 5 . . . 4662 Next page

PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News