Rxivist logo

Rxivist combines preprints from bioRxiv with data from Twitter to help you find the papers being discussed in your field. Currently indexing 76,920 bioRxiv papers from 333,655 authors.

Most downloaded bioRxiv papers, since beginning of last month

75,478 results found. For more information, click each entry to expand.

21: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody
more details view paper

Posted to bioRxiv 28 Jan 2020

Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody
8,280 downloads microbiology

Xiaolong Tian, Cheng Li, Ailing Huang, Shuai Xia, Sicong Lu, Zhengli Shi, Lu Lu, Shibo Jiang, Zhenlin Yang, Yanling Wu, Tianlei Ying

The newly identified 2019 novel coronavirus (2019-nCoV) has caused more than 800 laboratory-confirmed human infections, including 25 deaths, posing a serious threat to human health. Currently, however, there is no specific antiviral treatment or vaccine. Considering the relatively high identity of receptor binding domain (RBD) in 2019-nCoV and SARS-CoV, it is urgent to assess the cross-reactivity of anti-SARS-CoV antibodies with 2019-nCoV spike protein, which could have important implications for rapid development of vaccines and therapeutic antibodies against 2019-nCoV. Here, we report for the first time that a SARS-CoV-specific human monoclonal antibody, CR3022, could bind potently with 2019-nCoV RBD (KD of 6.3 nM). The epitope of CR3022 does not overlap with the ACE2 binding site within 2019-nCoV RBD. Therefore, CR3022 has the potential to be developed as candidate therapeutics, alone or in combination with other neutralizing antibodies, for the prevention and treatment of 2019-nCoV infections. Interestingly, some of the most potent SARS-CoV-specific neutralizing antibodies (e.g., m396, CR3014) that target the ACE2 binding site of SARS-CoV failed to bind 2019-nCoV spike protein, indicating that the difference in the RBD of SARS-CoV and 2019-nCoV has a critical impact for the cross-reactivity of neutralizing antibodies, and that it is still necessary to develop novel monoclonal antibodies that could bind specifically to 2019-nCoV RBD.

22: Direct RNA sequencing and early evolution of SARS-CoV-2
more details view paper

Posted to bioRxiv 07 Mar 2020

Direct RNA sequencing and early evolution of SARS-CoV-2
7,957 downloads microbiology

George Taiaroa, Daniel Rawlinson, Leo Featherstone, Miranda Pitt, Leon Caly, Julian Druce, Damian Purcell, Leigh Harty, Thomas Tran, Jason Roberts, Mike Catton, Deborah Williamson, Lachlan Coin, David Alejandro Duchêne

The rapid sharing of sequence information as seen throughout the current SARS-CoV-2 epidemic, represents an inflection point for genomic epidemiology. Here we describe aspects of coronavirus evolutionary genetics revealed from these data, and provide the first direct RNA sequence of SARS-CoV-2, detailing coronaviral subgenome-length mRNA architecture.

23: Predicting commercially available antiviral drugs that may act on the novel coronavirus (2019-nCoV), Wuhan, China through a drug-target interaction deep learning model
more details view paper

Posted to bioRxiv 02 Feb 2020

Predicting commercially available antiviral drugs that may act on the novel coronavirus (2019-nCoV), Wuhan, China through a drug-target interaction deep learning model
7,829 downloads microbiology

Bo Ram Beck, Bonggun Shin, Yoonjung Choi, Sungsoo Park, Keunsoo Kang

The infection of a novel coronavirus found in Wuhan of China (2019-nCoV) is rapidly spreading, and the incidence rate is increasing worldwide. Due to the lack of effective treatment options for 2019-nCoV, various strategies are being tested in China, including drug repurposing. In this study, we used our pre-trained deep learning-based drug-target interaction model called Molecule Transformer-Drug Target Interaction (MT-DTI) to identify commercially available drugs that could act on viral proteins of 2019-nCoV. The result showed that atazanavir, an antiretroviral medication used to treat and prevent the human immunodeficiency virus (HIV), is the best chemical compound, showing a inhibitory potency with Kd of 94.94 nM against the 2019-nCoV 3C-like proteinase, followed by efavirenz (199.17 nM), ritonavir (204.05 nM), and dolutegravir (336.91 nM). Interestingly, lopinavir, ritonavir, and darunavir are all designed to target viral proteinases. However, in our prediction, they may also bind to the replication complex components of 2019-nCoV with an inhibitory potency with Kd < 1000 nM. In addition, we also found that several antiviral agents, such as Kaletra, could be used for the treatment of 2019-nCoV, although there is no real-world evidence supporting the prediction. Overall, we suggest that the list of antiviral drugs identified by the MT-DTI model should be considered, when establishing effective treatment strategies for 2019-nCoV.

24: Host and infectivity prediction of Wuhan 2019 novel coronavirus using deep learning algorithm
more details view paper

Posted to bioRxiv 24 Jan 2020

Host and infectivity prediction of Wuhan 2019 novel coronavirus using deep learning algorithm
7,545 downloads systems biology

Qian Guo, Mo Li, Chunhui Wang, Peihong Wang, Zhencheng Fang, Jie tan, Shufang Wu, Yonghong Xiao, Huaiqiu Zhu

The recent outbreak of pneumonia in Wuhan, China caused by the 2019 Novel Coronavirus (2019-nCoV) emphasizes the importance of detecting novel viruses and predicting their risks of infecting people. In this report, we introduced the VHP (Virus Host Prediction) to predict the potential hosts of viruses using deep learning algorithm. Our prediction suggests that 2019-nCoV has close infectivity with other human coronaviruses, especially the severe acute respiratory syndrome coronavirus (SARS-CoV), Bat SARS-like Coronaviruses and the Middle East respiratory syndrome coronavirus (MERS-CoV). Based on our prediction, compared to the Coronaviruses infecting other vertebrates, bat coronaviruses are assigned with more similar infectivity patterns with 2019-nCoVs. Furthermore, by comparing the infectivity patterns of all viruses hosted on vertebrates, we found mink viruses show a closer infectivity pattern to 2019-nCov. These consequences of infectivity pattern analysis illustrate that bat and mink may be two candidate reservoirs of 2019-nCov.These results warn us to beware of 2019-nCoV and guide us to further explore the properties and reservoir of it. One Sentence Summary It is of great value to identify whether a newly discovered virus has the risk of infecting human. Guo et al. proposed a virus host prediction method based on deep learning to detect what kind of host a virus can infect with DNA sequence as input. Applied to the Wuhan 2019 Novel Coronavirus, our prediction demonstrated that several vertebrate-infectious coronaviruses have strong potential to infect human. This method will be helpful in future viral analysis and early prevention and control of viral pathogens.

25: Structure of dimeric full-length human ACE2 in complex with B0AT1
more details view paper

Posted to bioRxiv 18 Feb 2020

Structure of dimeric full-length human ACE2 in complex with B0AT1
7,523 downloads biochemistry

Renhong Yan, Yuanyuan Zhang, Yaning Li, Lu Xia, Qiang Zhou

Angiotensin-converting enzyme 2 (ACE2) is the surface receptor for SARS coronavirus (SARS-CoV) through interaction with its spike glycoprotein (S protein). ACE2 is also suggested to be the receptor for the new coronavirus (2019-nCoV), which is causing a serious epidemic in China manifested with severe respiratory syndrome. BAT1 (SLC6A19) is a neutral amino acid transporter whose surface expression in intestinal cells requires ACE2. Here we present the 2.9 Å resolution cryo-EM structure of full-length human ACE2 in complex with BAT1. The complex, assembled as a dimer of ACE2-BAT1 heterodimers, exhibits open and closed conformations due to the shifts of the peptidase domains of ACE2. A newly resolved Collectrin-like domain (CLD) on ACE2 mediates homo-dimerization. The extended TM7 in each BAT1 clamps CLD of ACE2. Structural analysis suggests that the ACE2-BAT1 complex can bind two S proteins simultaneously, providing important clues to the molecular basis for coronavirus recognition and infection.

26: Potential inhibitors for 2019-nCoV coronavirus M protease from clinically approved medicines
more details view paper

Posted to bioRxiv 29 Jan 2020

Potential inhibitors for 2019-nCoV coronavirus M protease from clinically approved medicines
6,964 downloads bioinformatics

Xin Liu, Xiu-Jie Wang

Starting from December 2019, a novel coronavirus, later named 2019-nCoV, was found to cause severe and rapid pandemic in China. Basing on the structural information, we have predicted a list of commercial medicines which may function as inhibitors for 2019-nCoV by targeting its main protease Mpro. These drugs may also be effective for other coronaviruses with similar Mpro binding sites and pocket structures.

27: Functional assessment of cell entry and receptor usage for lineage B β-coronaviruses, including 2019-nCoV
more details view paper

Posted to bioRxiv 22 Jan 2020

Functional assessment of cell entry and receptor usage for lineage B β-coronaviruses, including 2019-nCoV
6,635 downloads microbiology

Michael Letko, Vincent Munster

Over the past 20 years, several coronaviruses have crossed the species barrier into humans, causing outbreaks of severe, and often fatal, respiratory illness. Since SARS-CoV was first identified in animal markets, global viromics projects have discovered thousands of coronavirus sequences in diverse animals and geographic regions. Unfortunately, there are few tools available to functionally test these novel viruses for their ability to infect humans, which has severely hampered efforts to predict the next zoonotic viral outbreak. Here we developed an approach to rapidly screen lineage B betacoronaviruses, such as SARS-CoV and the recent 2019-nCoV, for receptor usage and their ability to infect cell types from different species. We show that host protease processing during viral entry is a significant barrier for several lineage B viruses and that bypassing this barrier allows several lineage B viruses to enter human cells through an unknown receptor. We also demonstrate how different lineage B viruses can recombine to gain entry into human cells and confirm that human ACE2 is the receptor for the recently emerging 2019-nCoV.

28: The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes
more details view paper

Posted to bioRxiv 31 Jan 2020

The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes
6,468 downloads microbiology

Hao Zhang, Zijian Kang, Haiyi Gong, Da Xu, Jing Wang, Zifu Li, Xingang Cui, Jianru Xiao, Tong Meng, Wang Zhou, Jianmin Liu, Huji Xu

Since December 2019, a newly identified coronavirus (2019 novel coronavirus, 2019-nCov) is causing outbreak of pneumonia in one of largest cities, Wuhan, in Hubei province of China and has draw significant public health attention. The same as severe acute respiratory syndrome coronavirus (SARS-CoV), 2019-nCov enters into host cells via cell receptor angiotensin converting enzyme II (ACE2). In order to dissect the ACE2-expressing cell composition and proportion and explore a potential route of the 2019-nCov infection in digestive system infection, 4 datasets with single-cell transcriptomes of lung, esophagus, gastric, ileum and colon were analyzed. The data showed that ACE2 was not only highly expressed in the lung AT2 cells, esophagus upper and stratified epithelial cells but also in absorptive enterocytes from ileum and colon. These results indicated along with respiratory systems, digestive system is a potential routes for 2019-nCov infection. In conclusion, this study has provided the bioinformatics evidence of the potential route for infection of 2019-nCov in digestive system along with respiratory tract and may have significant impact for our healthy policy setting regards to prevention of 2019-nCoV infection.

29: The Pathogenicity of SARS-CoV-2 in hACE2 Transgenic Mice
more details view paper

Posted to bioRxiv 11 Feb 2020

The Pathogenicity of SARS-CoV-2 in hACE2 Transgenic Mice
6,392 downloads microbiology

Linlin Bao, Wei Deng, Baoying Huang, Hong Gao, Jiangning Liu, Lili Ren, Qiang Wei, Pin Yu, Yanfeng Xu, Feifei Qi, Yajin Qu, Fengdi Li, Qi Lv, Wenling Wang, Jing Xue, Shuran Gong, Mingya Liu, Guanpeng Wang, Shunyi Wang, Zhiqi Song, Linna Zhao, Peipei Liu, Li Zhao, Fei Ye, Huijuan Wang, Weimin Zhou, Na Zhu, Wei Zhen, Haisheng Yu, Xiaojuan Zhang, Li Guo, Lan Chen, Conghui Wang, Ying Wang, Xinming Wang, Yan Xiao, Qiangming Sun, Hongqi Liu, Fanli Zhu, Chunxia Ma, Lingmei Yan, Mengli Yang, Jun Han, Wenbo Xu, Wenjie Tan, Xiaozhong Peng, Qi Jin, Guizhen Wu, Chuan Qin

Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) caused the Corona Virus Disease 2019 (COVID-19) cases in China has become a public health emergency of international concern (PHEIC). Based on angiotensin converting enzyme 2 (ACE2) as cell entry receptor of SARS-CoV, we used the hACE2 transgenic mice infected with SARS-CoV-2 to study the pathogenicity of the virus. Weight loss and virus replication in lung were observed in hACE2 mice infected with SARS-CoV-2. The typical histopathology was interstitial pneumonia with infiltration of significant lymphocytes and monocytes in alveolar interstitium, and accumulation of macrophages in alveolar cavities. Viral antigens were observed in the bronchial epithelial cells, alveolar macrophages and alveolar epithelia. The phenomenon was not found in wild type mice with SARS-CoV-2 infection. The pathogenicity of SARS-CoV-2 in hACE2 mice was clarified and the Koch’s postulates were fulfilled as well, and the mouse model may facilitate the development of therapeutics and vaccines against SARS-CoV-2.

30: Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak
more details view paper

Posted to bioRxiv 24 Jan 2020

Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak
6,182 downloads ecology

Shi Zhao, Qianyin Lin, Jinjun Ran, Salihu S. Musa, Guangpu Yang, Weiming Wang, Yijun Lou, Daozhou Gao, Lin Yang, Daihai He, Maggie H Wang

Backgrounds: An ongoing outbreak of a novel coronavirus (2019-nCoV) pneumonia hit a major city of China, Wuhan, December 2019 and subsequently reached other provinces/regions of China and countries. We present estimates of the basic reproduction number, R0, of 2019-nCoV in the early phase of the outbreak. Methods: Accounting for the impact of the variations in disease reporting rate, we modelled the epidemic curve of 2019-nCoV cases time series, in mainland China from January 10 to January 24, 2020, through the exponential growth. With the estimated intrinsic growth rate (γ), we estimated R0 by using the serial intervals (SI) of two other well-known coronavirus diseases, MERS and SARS, as approximations for the true unknown SI. Findings: The early outbreak data largely follows the exponential growth. We estimated that the mean R0 ranges from 2.24 (95%CI: 1.96-2.55) to 3.58 (95%CI: 2.89-4.39) associated with 8-fold to 2-fold increase in the reporting rate. We demonstrated that changes in reporting rate substantially affect estimates of R0. Conclusion: The mean estimate of R0 for the 2019-nCoV ranges from 2.24 to 3.58, and significantly larger than 1. Our findings indicate the potential of 2019-nCoV to cause outbreaks.

31: Pattern of early human-to-human transmission of Wuhan 2019-nCoV
more details view paper

Posted to bioRxiv 24 Jan 2020

Pattern of early human-to-human transmission of Wuhan 2019-nCoV
6,167 downloads microbiology

Julien Riou, Christian L. Althaus

On December 31, 2019, the World Health Organization was notified about a cluster of pneumonia of unknown aetiology in the city of Wuhan, China. Chinese authorities later identified a new coronavirus (2019-nCoV) as the causative agent of the outbreak. As of January 23, 2020, 655 cases have been confirmed in China and several other countries. Understanding the transmission characteristics and the potential for sustained human-to-human transmission of 2019-nCoV is critically important for coordinating current screening and containment strategies, and determining whether the outbreak constitutes a public health emergency of international concern (PHEIC). We performed stochastic simulations of early outbreak trajectories that are consistent with the epidemiological findings to date. We found the basic reproduction number, R_0, to be around 2.2 (90% high density interval 1.4--3.8), indicating the potential for sustained human-to-human transmission. Transmission characteristics appear to be of a similar magnitude to severe acute respiratory syndrome-related coronavirus (SARS-CoV) and the 1918 pandemic influenza. These findings underline the importance of heightened screening, surveillance and control efforts, particularly at airports and other travel hubs, in order to prevent further international spread of 2019-nCoV.

32: Structure, function and antigenicity of the SARS-CoV-2 spike glycoprotein
more details view paper

Posted to bioRxiv 20 Feb 2020

Structure, function and antigenicity of the SARS-CoV-2 spike glycoprotein
5,973 downloads biochemistry

Alexandra C Walls, Young-Jun Park, M. Alexandra Tortorici, Abigail Wall, Andrew T McGuire, David Veesler

The recent emergence of a novel coronavirus associated with an ongoing outbreak of pneumonia (Covid-2019) resulted in infections of more than 72,000 people and claimed over 1,800 lives. Coronavirus spike (S) glycoprotein trimers promote entry into cells and are the main target of the humoral immune response. We show here that SARS-CoV-2 S mediates entry in VeroE6 cells and in BHK cells transiently transfected with human ACE2, establishing ACE2 as a functional receptor for this novel coronavirus. We further demonstrate that the receptor-binding domains of SARS-CoV-2 S and SARS-CoV S bind with similar affinities to human ACE2, which correlates with the efficient spread of SARS-CoV-2 among humans. We found that the SARS-CoV-2 S glycoprotein harbors a furin cleavage site at the boundary between the S1/S2 subunits, which is processed during biogenesis and sets this virus apart from SARS-CoV and other SARS-related CoVs. We determined a cryo-electron microscopy structure of the SARS-CoV-2 S ectodomain trimer, demonstrating spontaneous opening of the receptor-binding domain, and providing a blueprint for the design of vaccines and inhibitors of viral entry. Finally, we demonstrate that SARS-CoV S murine polyclonal sera potently inhibited SARS-CoV-2 S-mediated entry into target cells, thereby indicating that cross-neutralizing antibodies targeting conserved S epitopes can be elicited upon vaccination.

33: Substrate specificity profiling of SARS-CoV-2 Mpro protease provides basis for anti-COVID-19 drug design
more details view paper

Posted to bioRxiv 08 Mar 2020

Substrate specificity profiling of SARS-CoV-2 Mpro protease provides basis for anti-COVID-19 drug design
5,761 downloads biochemistry

Wioletta Rut, Katarzyna Groborz, Linlin Zhang, Xinyuanyuan Sun, Mikolaj Zmudzinski, Rolf Hilgenfeld, Marcin Drag

In December 2019, the first cases of a novel coronavirus infection were diagnosed in Wuhan, China. Due to international travel and human-to-human transmission, the virus spread rapidly inside and outside of China. Currently, there is no effective antiviral treatment for COVID-19, therefore research efforts are focused on the rapid development of vaccines and antiviral drugs. The SARS-CoV-2 Mpro protease constitutes one of the most attractive antiviral drug targets. To address this emerging problem, we have synthesized a combinatorial library of fluorogenic substrates with glutamine in the P1 position. We used it to determine the substrate preferences of the SARS-CoV and SARS-CoV-2 proteases, using natural and a large panel of unnatural amino acids. The results of our work provide a structural framework for the design of inhibitors as antiviral agents or diagnostic tests.

34: A mathematical model for simulating the transmission of Wuhan novel Coronavirus
more details view paper

Posted to bioRxiv 19 Jan 2020

A mathematical model for simulating the transmission of Wuhan novel Coronavirus
5,507 downloads systems biology

Tianmu Chen, Jia Rui, Qiupeng Wang, Zeyu Zhao, Jing-An Cui, Ling Yin

As reported by the World Health Organization, a novel coronavirus (2019-nCoV) was identified as the causative virus of Wuhan pneumonia of unknown etiology by Chinese authorities on 7 January, 2020. In this study, we developed a Bats-Hosts-Reservoir-People transmission network model for simulating the potential transmission from the infection source (probable be bats) to the human infection. Since the Bats-Hosts-Reservoir network was hard to explore clearly and public concerns were focusing on the transmission from a seafood market (reservoir) to people, we simplified the model as Reservoir-People transmission network model. The basic reproduction number (R0) was calculated from the RP model to assess the transmissibility of the 2019-nCoV.

35: Genomic and protein structure modelling analysis depicts the origin and infectivity of 2019-nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan, China
more details view paper

Posted to bioRxiv 21 Jan 2020

Genomic and protein structure modelling analysis depicts the origin and infectivity of 2019-nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan, China
5,501 downloads microbiology

Ning Dong, Xuemei Yang, Lianwei Ye, Kaichao Chen, Edward Wai-Chi Chan, Mengsu Yang, Sheng Chen

Detailed genomic and structure-based analysis of a new coronavirus, namely 2019-nCoV, showed that the new virus is a new type of bat coronavirus and is genetically fairly distant from the human SARS coronavirus. Structure analysis of the spike (S) protein of this new virus showed that its S protein only binds weakly to the ACE2 receptor on human cells whereas the human SARS coronavirus exhibits strongly affinity to the ACE receptor. These findings suggest that the new virus does not readily transmit between humans and should theoretically not able to cause very serious human infection. These data are important to guide design of infection control policy and inform the public on the nature of threat imposed by 2019-nCov when results of direct laboratory tests on this virus are not expected to be available in the near future.

36: Breaking down of healthcare system: Mathematical modelling for controlling the novel coronavirus (2019-nCoV) outbreak in Wuhan, China
more details view paper

Posted to bioRxiv 28 Jan 2020

Breaking down of healthcare system: Mathematical modelling for controlling the novel coronavirus (2019-nCoV) outbreak in Wuhan, China
5,475 downloads microbiology

Wai-Kit Ming, Jian Huang, Casper J. P. Zhang

Background A novel coronavirus pneumonia initially identified in Wuhan, China and provisionally named 2019-nCoV has surged in the public. In anticipation of substantial burdens on healthcare system following this human-to-human spread, we aim to scrutinise the currently available information and evaluate the burden of healthcare systems during this outbreak in Wuhan. Methods and Findings We applied a modified SIR model to project the actual number of infected cases and the specific burdens on isolation wards and intensive care units (ICU), given the scenarios of different diagnosis rates as well as different public health intervention efficacy. Our estimates suggest, assuming 50% diagnosis rate if no public health interventions were implemented, that the actual number of infected cases could be much higher than the reported, with estimated 88,075 cases (as of 31st January, 2020), and projected burdens on isolation wards and ICU would be 34,786 and 9,346 respectively The estimated burdens on healthcare system could be largely reduced if at least 70% efficacy of public health intervention is achieved. Conclusion The health system burdens arising from the actual number of cases infected by the novel coronavirus appear to be considerable if no effective public health interventions were implemented. This calls for continuation of implemented anti-transmission measures (e.g., closure of schools and facilities, suspension of public transport, lockdown of city) and further effective large-scale interventions spanning all subgroups of populations (e.g., universal facemask wear) aiming at obtaining overall efficacy with at least 70% to ensure the functioning of and to avoid the breakdown of health system.

37: Modelling the epidemic trend of the 2019 novel coronavirus outbreak in China
more details view paper

Posted to bioRxiv 25 Jan 2020

Modelling the epidemic trend of the 2019 novel coronavirus outbreak in China
5,290 downloads microbiology

Mingwang Shen, Zhihang Peng, Yanni Xiao, Lei Zhang

We present a timely evaluation of the Chinese 2019-nCov epidemic in its initial phase, where 2019-nCov demonstrates comparable transmissibility but lower fatality rates than SARS and MERS. A quick diagnosis that leads to case isolation and integrated interventions will have a major impact on its future trend. Nevertheless, as China is facing its Spring Festival travel rush and the epidemic has spread beyond its borders, further investigation on its potential spatiotemporal transmission pattern and novel intervention strategies are warranted.

38: Isolation and Characterization of 2019-nCoV-like Coronavirus from Malayan Pangolins
more details view paper

Posted to bioRxiv 20 Feb 2020

Isolation and Characterization of 2019-nCoV-like Coronavirus from Malayan Pangolins
5,197 downloads microbiology

Kangpeng Xiao, Junqiong Zhai, Yaoyu Feng, Niu Zhou, Xu Zhang, Jie-Jian Zou, Na Li, Yaqiong Guo, Xiaobing Li, Xuejuan Shen, Zhipeng Zhang, Fanfan Shu, Wanyi Huang, Yu Li, Ziding Zhang, Rui-Ai Chen, Ya-Jiang Wu, Shi-Ming Peng, Mian Huang, Wei-Jun Xie, Qin-Hui Cai, Fang-Hui Hou, Yahong Liu, Wu Chen, Lihua Xiao, Yongyi Shen

The outbreak of 2019-nCoV in the central Chinese city of Wuhan at the end of 2019 poses unprecedent public health challenges to both China and the rest world. The new coronavirus shares high sequence identity to SARS-CoV and a newly identified bat coronavirus. While bats may be the reservoir host for various coronaviruses, whether 2019-nCoV has other hosts is still ambiguous. In this study, one coronavirus isolated from Malayan pangolins showed 100%, 98.2%, 96.7% and 90.4% amino acid identity with 2019-nCoV in the E, M, N and S genes, respectively. In particular, the receptor-binding domain of the S protein of the Pangolin-CoV is virtually identical to that of 2019-nCoV, with one amino acid difference. Comparison of available genomes suggests 2019-nCoV might have originated from the recombination of a Pangolin-CoV-like virus with a Bat-CoV-RaTG13-like virus. Infected pangolins showed clinical signs and histopathological changes, and the circulating antibodies reacted with the S protein of 2019-nCoV. The isolation of a coronavirus that is highly related to 2019-nCoV in the pangolins suggests that these animals have the potential to act as the intermediate host of 2019-nCoV. The newly identified coronavirus in the most-trafficked mammal could represent a continuous threat to public health if wildlife trade is not effectively controlled.

39: Structural basis for the recognition of the 2019-nCoV by human ACE2
more details view paper

Posted to bioRxiv 20 Feb 2020

Structural basis for the recognition of the 2019-nCoV by human ACE2
4,636 downloads biochemistry

Renhong Yan, Yuanyuan Zhang, Yingying Guo, Lu Xia, Qiang Zhou

Angiotensin-converting enzyme 2 (ACE2) has been suggested to be the cellular receptor for the new coronavirus (2019-nCoV) that is causing the coronavirus disease 2019 (COVID-19). Like other coronaviruses such as the SARS-CoV, the 2019-nCoV uses the receptor binding domain (RBD) of the surface spike glycoprotein (S protein) to engage ACE2. We most recently determined the structure of the full-length human ACE2 in complex with a neutral amino acid transporter BAT1. Here we report the cryo-EM structure of the full-length human ACE2 bound to the RBD of the 2019-nCoV at an overall resolution of 2.9 Å in the presence of BAT1. The local resolution at the ACE2-RBD interface is 3.5 Å, allowing analysis of the detailed interactions between the RBD and the receptor. Similar to that for the SARS-CoV, the RBD of the 2019-nCoV is recognized by the extracellular peptidase domain (PD) of ACE2 mainly through polar residues. Pairwise comparison reveals a number of variations that may determine the different affinities between ACE2 and the RBDs from these two related viruses.

40: Comparative analysis of primer-probe sets for the laboratory confirmation of SARS-CoV-2
more details view paper

Posted to bioRxiv 27 Feb 2020

Comparative analysis of primer-probe sets for the laboratory confirmation of SARS-CoV-2
4,587 downloads microbiology

Yu Jin Jung, Gun-Soo Park, Jun Hye Moon, Keunbon Ku, Seung-Hwa Beak, Seil Kim, Edmond Changkyun Park, Daeui Park, Jong-Hwan Lee, Cheol Woo Byeon, Joong Jin Lee, Jin-Soo Maeng, Seong Jun Kim, Seung Il Kim, Bum-Tae Kim, Min Jun Lee, Hong Gi Kim

Coronavirus disease 2019 (COVID-19) is newly emerging human infectious diseases, which is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, also previously known as 2019-nCoV). Within two months of the outbreak, more than 80,000 cases of COVID-19 have been confirmed worldwide. Since the human to human transmission occurred easily and the human infection is rapidly increasing, the sensitive and early diagnosis is essential to prevent the global outbreak. Recently, World Health Organization (WHO) announced various primer and probe sets for SARS-CoV-2 previously developed in China, Germany, Hong Kong, Japan, Thailand, and USA. In this study, we compared the ability to detect SARS-CoV-2 RNA among the seven primer-probe sets for N gene and the three primer-probe sets for Orf1 gene. The result of the comparative analysis represented that the 2019-nCoV\_N2, N3 of USA and the ORF1ab of China are the most sensitive primer-probe sets for N and Orf1 genes, respectively. Therefore, the appropriate combination from ORF1ab (China), 2019-nCoV\_N2, N3 (USA), and NIID\_2019-nCOV\_N (Japan) sets should be selected for the sensitive and reliable laboratory confirmation of SARS-CoV-2.

Previous page 1 2 3 4 5 6 . . . 3774 Next page

PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News