Rxivist logo

Rxivist combines preprints from bioRxiv with data from Twitter to help you find the papers being discussed in your field. Currently indexing 89,581 bioRxiv papers from 383,801 authors.

Most downloaded bioRxiv papers, all time

in category biochemistry

2,920 results found. For more information, click each entry to expand.

1: Structure of Mpro from COVID-19 virus and discovery of its inhibitors
more details view paper

Posted to bioRxiv 27 Feb 2020

Structure of Mpro from COVID-19 virus and discovery of its inhibitors
19,914 downloads biochemistry

Zhenming Jin, Xiaoyu Du, Yechun Xu, Yongqiang Deng, Meiqin Liu, Yao Zhao, Bing Zhang, Xiaofeng Li, Leike Zhang, Chao Peng, Yinkai Duan, Jing Yu, Lin Wang, Kailin Yang, Fengjiang Liu, Rendi Jiang, Xinglou Yang, Tian You, Xiaoce Liu, Xiuna Yang, Fang Bai, Hong Liu, Xiang Liu, Luke W. Guddat, Wenqing Xu, Gengfu Xiao, Chengfeng Qin, Zhengli Shi, Hualiang Jiang, Zihe Rao, Haitao Yang

A new coronavirus (CoV) identified as COVID-19 virus is the etiological agent responsible for the 2019-2020 viral pneumonia outbreak that commenced in Wuhan[1][1]–[4][2]. Currently there is no targeted therapeutics and effective treatment options remain very limited. In order to rapidly discover lead compounds for clinical use, we initiated a program of combined structure-assisted drug design, virtual drug screening and high-throughput screening to identify new drug leads that target the COVID-19 virus main protease (Mpro). Mpro is a key CoV enzyme, which plays a pivotal role in mediating viral replication and transcription, making it an attractive drug target for this virus[5][3],[6][4]. Here, we identified a mechanism-based inhibitor, N3, by computer-aided drug design and subsequently determined the crystal structure of COVID-19 virus Mpro in complex with this compound. Next, through a combination of structure-based virtual and high-throughput screening, we assayed over 10,000 compounds including approved drugs, drug candidates in clinical trials, and other pharmacologically active compounds as inhibitors of Mpro. Six of these inhibit Mpro with IC50 values ranging from 0.67 to 21.4 μM. Ebselen also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of this screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases where no specific drugs or vaccines are available. [1]: #ref-1 [2]: #ref-4 [3]: #ref-5 [4]: #ref-6

2: Structure, function and antigenicity of the SARS-CoV-2 spike glycoprotein
more details view paper

Posted to bioRxiv 20 Feb 2020

Structure, function and antigenicity of the SARS-CoV-2 spike glycoprotein
12,918 downloads biochemistry

Alexandra C. Walls, Young-Jun Park, M. Alexandra Tortorici, Abigail Wall, Andrew T. McGuire, David Veesler

The recent emergence of a novel coronavirus associated with an ongoing outbreak of pneumonia (Covid-2019) resulted in infections of more than 72,000 people and claimed over 1,800 lives. Coronavirus spike (S) glycoprotein trimers promote entry into cells and are the main target of the humoral immune response. We show here that SARS-CoV-2 S mediates entry in VeroE6 cells and in BHK cells transiently transfected with human ACE2, establishing ACE2 as a functional receptor for this novel coronavirus. We further demonstrate that the receptor-binding domains of SARS-CoV-2 S and SARS-CoV S bind with similar affinities to human ACE2, which correlates with the efficient spread of SARS-CoV-2 among humans. We found that the SARS-CoV-2 S glycoprotein harbors a furin cleavage site at the boundary between the S1/S2 subunits, which is processed during biogenesis and sets this virus apart from SARS-CoV and other SARS-related CoVs. We determined a cryo-electron microscopy structure of the SARS-CoV-2 S ectodomain trimer, demonstrating spontaneous opening of the receptor-binding domain, and providing a blueprint for the design of vaccines and inhibitors of viral entry. Finally, we demonstrate that SARS-CoV S murine polyclonal sera potently inhibited SARS-CoV-2 S-mediated entry into target cells, thereby indicating that cross-neutralizing antibodies targeting conserved S epitopes can be elicited upon vaccination.

3: Structure of dimeric full-length human ACE2 in complex with B0AT1
more details view paper

Posted to bioRxiv 18 Feb 2020

Structure of dimeric full-length human ACE2 in complex with B0AT1
11,834 downloads biochemistry

Renhong Yan, Yuanyuan Zhang, Yaning Li, Lu Xia, Qiang Zhou

Angiotensin-converting enzyme 2 (ACE2) is the surface receptor for SARS coronavirus (SARS-CoV) through interaction with its spike glycoprotein (S protein). ACE2 is also suggested to be the receptor for the new coronavirus (2019-nCoV), which is causing a serious epidemic in China manifested with severe respiratory syndrome. BAT1 (SLC6A19) is a neutral amino acid transporter whose surface expression in intestinal cells requires ACE2. Here we present the 2.9 Å resolution cryo-EM structure of full-length human ACE2 in complex with BAT1. The complex, assembled as a dimer of ACE2-BAT1 heterodimers, exhibits open and closed conformations due to the shifts of the peptidase domains of ACE2. A newly resolved Collectrin-like domain (CLD) on ACE2 mediates homo-dimerization. The extended TM7 in each BAT1 clamps CLD of ACE2. Structural analysis suggests that the ACE2-BAT1 complex can bind two S proteins simultaneously, providing important clues to the molecular basis for coronavirus recognition and infection.

4: Substrate specificity profiling of SARS-CoV-2 main protease enables design of activity-based probes for patient-sample imaging
more details view paper

Posted to bioRxiv 08 Mar 2020

Substrate specificity profiling of SARS-CoV-2 main protease enables design of activity-based probes for patient-sample imaging
10,756 downloads biochemistry

Wioletta Rut, Katarzyna Groborz, Linlin Zhang, Xinyuanyuan Sun, Mikolaj Zmudzinski, Bartlomiej Pawlik, Wojciech Młynarski, Rolf Hilgenfeld, Marcin Drąg

In December 2019, the first cases of infection with a novel coronavirus, SARS-CoV-2, were diagnosed in Wuhan, China. Due to international travel and human-to-human transmission, the virus spread rapidly inside and outside of China. Currently, there is no effective antiviral treatment for coronavirus disease 2019 (COVID-19); therefore, research efforts are focused on the rapid development of vaccines and antiviral drugs. The SARS-CoV-2 main protease constitutes one of the most attractive antiviral drug targets. To address this emerging problem, we have synthesized a combinatorial library of fluorogenic substrates with glutamine in the P1 position. We used it to determine the substrate preferences of the SARS-CoV and SARS-CoV-2 main proteases, using natural and a large panel of unnatural amino acids. On the basis of these findings, we designed and synthesized an inhibitor and two activity-based probes, for one of which we determined the crystal structure of its complex with the SARS-CoV-2 Mpro. Using this approach we visualized SARS-CoV-2 active Mpro within nasopharyngeal epithelial cells of a patient with active COVID-19 infection. The results of our work provide a structural framework for the design of inhibitors as antiviral agents or diagnostic tests. ### Competing Interest Statement Wroclaw University of Science and Technology has filed a patent application covering compounds: Ac-Abu-Tle-Leu-Gln-VS, Biotin-PEG(4)-Abu-Tle-Leu-Gln-VS and Cy5-PEG(4)-Abu-Tle-Leu-Gln-VS as well as related compounds with W.R. and M.D. as inventors.

5: The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1 Receptor Binding Domain undergoes conformational change upon heparin binding.
more details view paper

Posted to bioRxiv 02 Mar 2020

The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1 Receptor Binding Domain undergoes conformational change upon heparin binding.
8,759 downloads biochemistry

Courtney Mycroft-West, Dunhao Su, Stefano Elli, Yong Li, Scott Guimond, Gavin Miller, Jeremy E Turnbull, Edwin Yates, Marco Guerrini, David Fernig, Marcelo Lima, Mark A. Skidmore

Many pathogens take advantage of the dependence of the host on the interaction of hundreds of extracellular proteins with the glycosaminoglycans heparan sulphate to regulate homeostasis and use heparan sulphate as a means to adhere and gain access to cells. Moreover, mucosal epithelia such as that of the respiratory tract are protected by a layer of mucin polysaccharides, which are usually sulphated. Consequently, the polydisperse, natural products of heparan sulphate and the allied polysaccharide, heparin have been found to be involved and prevent infection by a range of viruses including S-associated coronavirus strain HSR1. Here we use surface plasmon resonance and circular dichroism to measure the interaction between the SARS-CoV- 2 Spike S1 protein receptor binding domain (SARS-CoV-2 S1 RBD) and heparin. The data demonstrate an interaction between the recombinant surface receptor binding domain and the polysaccharide. This has implications for the rapid development of a first-line therapeutic by repurposing heparin and for next-generation, tailor-made, GAG-based antivirals. ### Competing Interest Statement The authors have declared no competing interest.

6: Structure of RNA-dependent RNA polymerase from 2019-nCoV, a major antiviral drug target
more details view paper

Posted to bioRxiv 17 Mar 2020

Structure of RNA-dependent RNA polymerase from 2019-nCoV, a major antiviral drug target
8,714 downloads biochemistry

Yan Gao, Liming Yan, Yucen Huang, Fengjiang Liu, Yao Zhao, Lin Cao, Tao Wang, Qianqian Sun, Zhenhua Ming, Lianqi Zhang, Ji Ge, Litao Zheng, Ying Zhang, Haofeng Wang, Yan Zhu, Chen Zhu, Tianyu Hu, Tian Hua, Bing Zhang, Xiuna Yang, Jun Li, Haitao Yang, Zhijie Liu, Wenqing Xu, Luke W. Guddat, Quan Wang, Zhiyong Lou, Zihe Rao

A novel coronavirus (2019-nCoV) outbreak has caused a global pandemic resulting in tens of thousands of infections and thousands of deaths worldwide. The RNA-dependent RNA polymerase (RdRp, also named nsp12), which catalyzes the synthesis of viral RNA, is a key component of coronaviral replication/transcription machinery and appears to be a primary target for the antiviral drug, remdesivir. Here we report the cryo-EM structure of 2019-nCoV full-length nsp12 in complex with cofactors nsp7 and nsp8 at a resolution of 2.9-Å. Additional to the conserved architecture of the polymerase core of the viral polymerase family and a nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain featured in coronaviral RdRp, nsp12 possesses a newly identified β-hairpin domain at its N-terminal. Key residues for viral replication and transcription are observed. A comparative analysis to show how remdesivir binds to this polymerase is also provided. This structure provides insight into the central component of coronaviral replication/transcription machinery and sheds light on the design of new antiviral therapeutics targeting viral RdRp. One Sentence Summary Structure of 2019-nCov RNA polymerase. ### Competing Interest Statement

7: The sequence of human ACE2 is suboptimal for binding the S spike protein of SARS coronavirus 2
more details view paper

Posted to bioRxiv 17 Mar 2020

The sequence of human ACE2 is suboptimal for binding the S spike protein of SARS coronavirus 2
8,069 downloads biochemistry

Erik Procko

The rapid and escalating spread of SARS coronavirus 2 (SARS-CoV-2) poses an immediate public health emergency. The viral spike protein S binds ACE2 on host cells to initiate molecular events that release the viral genome intracellularly. Soluble ACE2 inhibits entry of both SARS and SARS-2 coronaviruses by acting as a decoy for S binding sites, and is a candidate for therapeutic, prophylactic and diagnostic development. Using deep mutagenesis, variants of ACE2 are identified with increased binding to the receptor binding domain of S. Mutations are found across the interface, in the N90-glycosylation motif, and at buried sites where they are predicted to enhance local folding and presentation of the interaction epitope. When single substitutions are combined, large increases in binding can be achieved. The mutational landscape offers a blueprint for engineering high affinity proteins and peptides that block receptor binding sites on S to meet this unprecedented challenge. ### Competing Interest Statement E.P. is the inventor on a provisional patent filing by the University of Illinois claiming mutations in ACE2 described here that enhance binding to S. E.P. is a cofounder of Orthogonal Biologics Inc, which has a license from the University of Illinois.

8: Structural basis for the recognition of the 2019-nCoV by human ACE2
more details view paper

Posted to bioRxiv 20 Feb 2020

Structural basis for the recognition of the 2019-nCoV by human ACE2
7,766 downloads biochemistry

Renhong Yan, Yuanyuan Zhang, Yingying Guo, Lu Xia, Qiang Zhou

Angiotensin-converting enzyme 2 (ACE2) has been suggested to be the cellular receptor for the new coronavirus (2019-nCoV) that is causing the coronavirus disease 2019 (COVID-19). Like other coronaviruses such as the SARS-CoV, the 2019-nCoV uses the receptor binding domain (RBD) of the surface spike glycoprotein (S protein) to engage ACE2. We most recently determined the structure of the full-length human ACE2 in complex with a neutral amino acid transporter BAT1. Here we report the cryo-EM structure of the full-length human ACE2 bound to the RBD of the 2019-nCoV at an overall resolution of 2.9 Å in the presence of BAT1. The local resolution at the ACE2-RBD interface is 3.5 Å, allowing analysis of the detailed interactions between the RBD and the receptor. Similar to that for the SARS-CoV, the RBD of the 2019-nCoV is recognized by the extracellular peptidase domain (PD) of ACE2 mainly through polar residues. Pairwise comparison reveals a number of variations that may determine the different affinities between ACE2 and the RBDs from these two related viruses.

9: Homology Directed Repair by Cas9:Donor Co-localization in Mammalian Cells
more details view paper

Posted to bioRxiv 16 Jan 2018

Homology Directed Repair by Cas9:Donor Co-localization in Mammalian Cells
7,074 downloads biochemistry

Philip JR Roche, Heidi Gytz, Faiz Hussain, Christopher JF Cameron, Denis Paquette, Mathieu Blanchette, Josée Dostie, Bhushan Nagar, Uri David Akavia

Homology directed repair (HDR) induced by site specific DNA double strand breaks (DSB) with CRISPR/Cas9 is a precision gene editing approach that occurs at low frequency in comparison to indel forming non homologous end joining (NHEJ). In order to obtain high HDR percentages in mammalian cells, we engineered Cas9 protein fused to a high-affinity monoavidin domain to deliver biotinylated donor DNA to a DSB site. In addition, we used the cationic polymer, polyethylenimine, to deliver Cas9 RNP-donor DNA complex into the cell. Combining these strategies improved HDR percentages of up to 90% in three tested loci (CXCR4, EMX1, and TLR) in standard HEK293 cells. Our approach offers a cost effective, simple and broadly applicable gene editing method, thereby expanding the CRISPR/Cas9 genome editing toolbox.

10: Heparin inhibits cellular invasion by SARS-CoV-2: structural dependence of the interaction of the surface protein (spike) S1 receptor binding domain with heparin.
more details view paper

Posted to bioRxiv 28 Apr 2020

Heparin inhibits cellular invasion by SARS-CoV-2: structural dependence of the interaction of the surface protein (spike) S1 receptor binding domain with heparin.
6,708 downloads biochemistry

Courtney J. Mycroft-West, Dunhao Su, Isabel Pagani, Timothy R. Rudd, Stefano Elli, Scott Guimond, Gavin Miller, Maria C. Z. Meneghetti, Helena B. Nader, Yong Li, Quentin M. Nunes, Patricia Procter, Nicasio Mancini, Massimo Clementi, Antonella Bisio, Nicholas R. Forsyth, Jeremy E Turnbull, Marco Guerrini, David Fernig, Elisa Vicenzi, Edwin Yates, Marcelo Lima, Mark A. Skidmore

The dependence of the host on the interaction of hundreds of extracellular proteins with the cell surface glycosaminoglycan heparan sulphate (HS) for the regulation of homeostasis is exploited by many microbial pathogens as a means of adherence and invasion. The closely related polysaccharide heparin, the widely used anticoagulant drug, which is structurally similar to HS and is a common experimental proxy, can be expected to mimic the properties of HS. Heparin prevents infection by a range of viruses if added exogenously, including S-associated coronavirus strain HSR1. Heparin prevents infection by a range of viruses if add-ed exogenously, including S-associated coronavirus strain HSR1. Here, we show that the addition of heparin to Vero cells between 6.25 - 200 μg/mL, which spans the concentration of heparin in therapeutic use, and inhibits invasion by SARS-CoV-2 at between 44 and 80%. We also demonstrate that heparin binds to the Spike (S1) protein receptor binding domain and induces a conformational change, illustrated by surface plasmon resonance and circular dichroism spectroscopy studies. The structural features of heparin on which this interaction depends were investigated using a library of heparin derivatives and size-defined fragments. Binding is more strongly dependent on the presence of 2-O or 6-O sulphation, and the con-sequent conformational consequences in the heparin structure, than on N-sulphation. A hexasaccharide is required for conformational changes to be induced in the secondary structure that are comparable to those that arise from heparin binding. Enoxaparin, a low molecular weight clinical anticoagulant, also binds the S1 RBD protein and induces conformational change. These findings have implications for the rapid development of a first-line therapeutic by repurposing heparin as well as for next-generation, tailor-made, GAG-based antiviral agents against SARS-CoV-2 and other members of the Coronaviridae. ### Competing Interest Statement The authors have declared no competing interest.

11: Molecular Modeling Evaluation of the Binding Effect of Ritonavir, Lopinavir and Darunavir to Severe Acute Respiratory Syndrome Coronavirus 2 Proteases
more details view paper

Posted to bioRxiv 03 Feb 2020

Molecular Modeling Evaluation of the Binding Effect of Ritonavir, Lopinavir and Darunavir to Severe Acute Respiratory Syndrome Coronavirus 2 Proteases
6,448 downloads biochemistry

Shen Lin, Runnan Shen, Jingdong He, Xinhao Li, Xushun Guo

Three anti-HIV drugs, ritonavir, lopinavir and darunavir, might have therapeutic effect on coronavirus disease 2019 (COVID-19). In this study, the structure models of two severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteases, coronavirus endopeptidase C30 (CEP\_C30) and papain like viral protease (PLVP), were built by homology modeling. Ritonavir, lopinavir and darunavir were then docked to the models, respectively, followed by energy minimization of the protease-drug complexes. In the simulations, ritonavir can bind to CEP\_C30 most suitably, and induce significant conformation changes of CEP\_C30; lopinavir can also bind to CEP\_C30 suitably, and induce significant conformation changes of CEP\_C30; darunavir can bind to PLVP suitably with slight conformation changes of PLVP. It is suggested that the therapeutic effect of ritonavir and lopinavir on COVID-19 may be mainly due to their inhibitory effect on CEP\_C30, while ritonavir may have stronger efficacy; the inhibitory effect of darunavir on SARS-CoV-2 and its potential therapeutic effect may be mainly due to its inhibitory effect on PLVP.

12: CRISPR/Cas9-APEX-mediated proximity labeling enables discovery of proteins associated with a predefined genomic locus in living cells
more details view paper

Posted to bioRxiv 04 Jul 2017

CRISPR/Cas9-APEX-mediated proximity labeling enables discovery of proteins associated with a predefined genomic locus in living cells
6,101 downloads biochemistry

Samuel A. Myers, Jason Wright, Feng Zhang, Steven A. Carr

The activation or repression of a gene's expression is primarily controlled by changes in the proteins that occupy its regulatory elements. The most common method to identify proteins associated with genomic loci is chromatin immunoprecipitation (ChIP). While having greatly advanced our understanding of gene expression regulation, ChIP requires specific, high quality, IP-competent antibodies against nominated proteins, which can limit its utility and scope for discovery. Thus, a method able to discover and identify proteins associated with a particular genomic locus within the native cellular context would be extremely valuable. Here, we present a novel technology combining recent advances in chemical biology, genome targeting, and quantitative mass spectrometry to develop genomic locus proteomics, a method able to identify proteins which occupy a specific genomic locus.

13: Platform for rapid nanobody discovery in vitro
more details view paper

Posted to bioRxiv 16 Jun 2017

Platform for rapid nanobody discovery in vitro
5,638 downloads biochemistry

Conor McMahon, Alexander S Baier, Sanduo Zheng, Roberta Pascolutti, Janice X. Ong, Sarah C. Erlandson, Daniel Hilger, Aaron M. Ring, Aashish Manglik, Andrew C. Kruse

Camelid single-domain antibody fragments ('nanobodies') provide the remarkable specificity of antibodies within a single immunoglobulin VHH domain. This unique feature enables applications ranging from their use as biochemical tools to therapeutic agents. Virtually all nanobodies reported to date have been obtained by animal immunization, a bottleneck restricting many applications of this technology. To solve this problem, we developed a fully in vitro platform for nanobody discovery based on yeast surface display of a synthetic nanobody scaffold. This platform provides a facile and cost-effective method for rapidly isolating nanobodies targeting a diverse range of antigens. We provide a blueprint for identifying nanobodies starting from both purified and non-purified antigens, and in addition, we demonstrate application of the platform to discover rare conformationally-selective nanobodies to a lipid flippase and a G protein-coupled receptor. To facilitate broad deployment of this platform, we have made the library and all associated protocols publicly available.

14: All-in-One Dual CRISPR-Cas12a (AIOD-CRISPR) Assay: A Case for Rapid, Ultrasensitive and Visual Detection of Novel Coronavirus SARS-CoV-2 and HIV virus
more details view paper

Posted to bioRxiv 21 Mar 2020

All-in-One Dual CRISPR-Cas12a (AIOD-CRISPR) Assay: A Case for Rapid, Ultrasensitive and Visual Detection of Novel Coronavirus SARS-CoV-2 and HIV virus
5,603 downloads biochemistry

Xiong Ding, Kun Yin, Ziyue Li, Changchun Liu

A recent outbreak of novel coronavirus (SARS-CoV-2), the causative agent of COVID-19, has spread rapidly all over the world. Human immunodeficiency virus (HIV) is another deadly virus and causes acquired immunodeficiency syndrome (AIDS). Rapid and early detection of these viruses will facilitate early intervention and reduce disease transmission risk. Here, we present an All-In-One Dual CRISPR-Cas12a (termed "AIOD-CRISPR") assay method for simple, rapid, ultrasensitive, one-pot, and visual detection of coronavirus SARS-CoV-2 and HIV virus. In our AIOD CRISPR assay, a pair of crRNAs was introduced to initiate dual CRISPR-Cas12a detection and improve detection sensitivity. The AIOD-CRISPR assay system was successfully utilized to detect nucleic acids (DNA and RNA) of SARS-CoV-2 and HIV with a sensitivity of few copies. Also, it was evaluated by detecting HIV-1 RNA extracted from human plasma samples, achieving a comparable sensitivity with real-time RT-PCR method. Thus, our method has a great potential for developing next-generation point-of-care molecular diagnostics.

15: Aequorea victoria’s secrets
more details view paper

Posted to bioRxiv 19 Jun 2019

Aequorea victoria’s secrets
5,557 downloads biochemistry

Talley Lambert, Hadrien Depernet, Guillaume Gotthard, Darrin T. Schultz, Isabelle Navizet, Daphne S. Bindels, Vincent Levesque, Jennifer N. Moffatt, Anya Salih, Antoine Royant, Nathan C. Shaner

Using mRNA-Seq and de novo transcriptome assembly, we identified, cloned and characterized nine previously undiscovered fluorescent protein (FP) homologs from Aequorea victoria and a related Aequorea species, with most sequences highly divergent from avGFP. Among these FPs are the brightest GFP homolog yet characterized and a reversibly photochromic FP that responds to UV and blue light. Beyond green emitters, Aequorea species express purple- and blue-pigmented chromoproteins (CPs) with absorbances ranging from green to far-red, including two that are photoconvertible. X-ray crystallography revealed that Aequorea CPs contain a chemically novel chromophore with an unexpected crosslink to the main polypeptide chain. Because of the unique attributes of several of these newly discovered FPs, we expect that Aequorea will, once again, give rise to an entirely new generation of useful probes for bioimaging and biosensing.

16: CRISPR-Cas12a target binding unleashes single-stranded DNase activity
more details view paper

Posted to bioRxiv 29 Nov 2017

CRISPR-Cas12a target binding unleashes single-stranded DNase activity
4,958 downloads biochemistry

Janice S Chen, Enbo Ma, Lucas B Harrington, Xinran Tian, Jennifer Doudna

CRISPR-Cas12a (Cpf1) proteins are RNA-guided DNA targeting enzymes that bind and cut DNA as components of bacterial adaptive immune systems. Like CRISPR-Cas9, Cas12a can be used as a powerful genome editing tool based on its ability to induce genetic changes in cells at sites of double-stranded DNA (dsDNA) cuts. Here we show that RNA-guided DNA binding unleashes robust, non-specific single-stranded DNA (ssDNA) cleavage activity in Cas12a sufficient to completely degrade both linear and circular ssDNA molecules within minutes. This activity, catalyzed by the same active site responsible for site-specific dsDNA cutting, indiscriminately shreds ssDNA with rapid multiple-turnover cleavage kinetics. Activation of ssDNA cutting requires faithful recognition of a DNA target sequence matching the 20-nucleotide guide RNA sequence with specificity sufficient to distinguish between closely related viral serotypes. We find that target-dependent ssDNA degradation, not observed for CRISPR-Cas9 enzymes, is a fundamental property of type V CRISPR-Cas12 proteins, revealing a fascinating parallel with the RNA-triggered general RNase activity of the type VI CRISPR-Cas13 enzymes.

17: Thermal Decomposition Of The Amino Acids Glycine, Cysteine, Aspartic Acid, Asparagine, Glutamic Acid, Glutamine, Arginine And Histidine
more details view paper

Posted to bioRxiv 22 Mar 2017

Thermal Decomposition Of The Amino Acids Glycine, Cysteine, Aspartic Acid, Asparagine, Glutamic Acid, Glutamine, Arginine And Histidine
4,939 downloads biochemistry

Ingrid M Weiss, Christina Muth, Robert Drumm, Helmut O.K. Kirchner

Calorimetry, thermogravimetry and mass spectrometry were used to follow the thermal decomposition of the eight amino acids G, C, D, N, E, Q, R and H between 185 °C and 280 °C. Endothermic heats of decomposition between 72 and 151 kJ/mol are needed to form 12 to 70 % volatile products. This process is neither melting nor sublimation. With exception of cysteine they emit mainly H2O, some NH3 and no CO2. Cysteine produces CO2 and little else. The reactions are described by polynomials, AA → a (NH3) + b (H2O) + c (CO2) + d (H2S) + e (residue), with integer or half integer coefficients. The solid monomolecular residues are rich in peptide bonds.

18: In silico approach toward the identification of unique peptides from viral protein infection: Application to COVID-19
more details view paper

Posted to bioRxiv 10 Mar 2020

In silico approach toward the identification of unique peptides from viral protein infection: Application to COVID-19
4,815 downloads biochemistry

Ben Orsburn, Conor Jenkins, Sierra M. Miller, Benjamin A. Neely, Namandje N Bumpus

We describe a method for rapid in silico selection of diagnostic peptides from newly described viral pathogens and applied this approach to SARS-CoV-2/COVID-19. This approach is multi-tiered, beginning with compiling the theoretical protein sequences from genomic derived data. In the case of SARS-CoV-2 we begin with 496 peptides that would be produced by proteolytic digestion of the viral proteins. To eliminate peptides that would cause cross-reactivity and false positives we remove peptides from consideration that have sequence homology or similar chemical characteristics using a progressively larger database of background peptides. Using this pipeline, we can remove 47 peptides from consideration as diagnostic due to the presence of peptides derived from the human proteome. To address the complexity of the human microbiome, we describe a method to create a database of all proteins of relevant abundance in the saliva microbiome. By utilizing a protein-based approach to the microbiome we can more accurately identify peptides that will be problematic in COVID-19 studies which removes 12 peptides from consideration. To identify diagnostic peptides, another 7 peptides are flagged for removal following comparison to the proteome backgrounds of viral and bacterial pathogens of similar clinical presentation. By aligning the protein sequences of SARS-CoV-2 field isolates deposited to date we can identify peptides for removal due to their presence in highly variable regions that may lead to false negatives as the pathogen evolves. We provide maps of these regions and highlight 3 peptides that should be avoided as potential diagnostic or vaccine targets. Finally, we leverage publicly deposited proteomics data from human cells infected with SARS-CoV-2, as well as a second study with the closely related MERS-CoV to identify the two proteins of highest abundance in human infections. The resulting final list contains the 24 peptides most unique and diagnostic of SARS-CoV-2 infections. These peptides represent the best targets for the development of antibodies are clinical diagnostics. To demonstrate one application of this we model peptide fragmentation using a deep learning tool to rapidly generate targeted LCMS assays and data processing method for detecting CoVID-19 infected patient samples. ![Figure][1]</img> ### Competing Interest Statement The authors have declared no competing interest. [1]: pending:yes

19: Enhanced proofreading governs CRISPR-Cas9 targeting accuracy
more details view paper

Posted to bioRxiv 06 Jul 2017

Enhanced proofreading governs CRISPR-Cas9 targeting accuracy
4,754 downloads biochemistry

Janice S Chen, Yavuz S. Dagdas, Benjamin P. Kleinstiver, Moira M. Welch, Lucas B Harrington, Samuel H. Sternberg, J. Keith Joung, Ahmet Yildiz, Jennifer Doudna

The RNA-guided CRISPR-Cas9 nuclease from Streptococcus pyogenes (SpCas9) has been widely repurposed for genome editing. High-fidelity (SpCas9-HF1) and enhanced specificity (eSpCas9(1.1)) variants exhibit substantially reduced off-target cleavage in human cells, but the mechanism of target discrimination and the potential to further improve fidelity were unknown. Using single-molecule Förster resonance energy transfer (smFRET) experiments, we show that both SpCas9-HF1 and eSpCas9(1.1) are trapped in an inactive state when bound to mismatched targets. We find that a non-catalytic domain within Cas9, REC3, recognizes target mismatches and governs the HNH nuclease to regulate overall catalytic competence. Exploiting this observation, we identified residues within REC3 involved in mismatch sensing and designed a new hyper-accurate Cas9 variant (HypaCas9) that retains robust on-target activity in human cells. These results offer a more comprehensive model to rationalize and modify the balance between target recognition and nuclease activation for precision genome editing.

20: REASSESSING THE REVOLUTIONS RESOLUTIONS
more details view paper

Posted to bioRxiv 24 Nov 2017

REASSESSING THE REVOLUTIONS RESOLUTIONS
4,673 downloads biochemistry

Marin van Heel, Michael C. Schatz

We are currently facing an avalanche of cryoEM (cryogenic Electron Microscopy) publications presenting beautiful structures at resolution levels of ~3 Angstrom: a true resolution revolution [Kuehlbrandt, Science 343(2014)1443,1444]. Impressive as these results may be, a fundamental statistical error has persisted in the literature that affects the numerical resolution values for practically all published structures. The error goes back to a misinterpretation of basic statistics and pervades virtually all popular cryo EM quality metrics. The resolution in cryo EM is typically assessed by the Fourier Shell Correlation FSC [Harauz & van Heel: Optik 73(1986)146,156] using a fixed threshold value of 0.143 (FSC 0.143) [Rosenthal, Henderson, J.Mol.Biol. 333(2003)721,745]. Using a simple model experiment we illustrate why this fixed threshold is flawed and we pinpoint the source of the resolution confusion. When two vectors are uncorrelated the expectation value of their inner-product is zero. That, however, does not imply that each individual inner-product of the vectors is zero (the vectors are not orthogonal). This error was introduced to electron microscopy in [Frank & Al Ali, Nature 256(1975)376,379] and has since proliferated into virtually all quality and resolution related metrics in EM. One criterion not affected by this error is the information-based half bit FSC threshold [van Heel & Schatz: J.Struct.Biol. 151(2005)250-262].

Previous page 1 2 3 4 5 . . . 146 Next page

PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News