Rxivist logo

Rxivist combines preprints from bioRxiv with data from Twitter to help you find the papers being discussed in your field. Currently indexing 76,920 bioRxiv papers from 333,655 authors.

Most downloaded bioRxiv papers, since beginning of last month

75,500 results found. For more information, click each entry to expand.

1: Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag
more details view paper

Posted to bioRxiv 31 Jan 2020

Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag
199,439 downloads evolutionary biology

Prashant Pradhan, Ashutosh Kumar Pandey, Akhilesh Mishra, Parul Gupta, Praveen Kumar Tripathi, Manoj Balakrishnan Menon, James Gomes, Perumal Vivekanandan, Bishwajit Kundu

This paper has been withdrawn by its authors. They intend to revise it in response to comments received from the research community on their technical approach and their interpretation of the results. If you have any questions, please contact the corresponding author.

2: A human monoclonal 1 antibody blocking SARS-CoV-2 infection
more details view paper

Posted to bioRxiv 12 Mar 2020

A human monoclonal 1 antibody blocking SARS-CoV-2 infection
76,888 downloads microbiology

Chunyan Wang, Wentao Li, Dubravka Drabek, Nisreen M.A. Okba, Rien van Haperen, Albert D.M.E. Osterhaus, Frank J.M. van Kuppeveld, Bart L. Haagmans, Frank Grosveld, Berend-Jan Bosch

The emergence of the novel human coronavirus SARS-CoV-2 in Wuhan, China has caused a worldwide epidemic of respiratory disease (COVID-19). Vaccines and targeted therapeutics for treatment of this disease are currently lacking. Here we report a human monoclonal antibody that neutralizes SARS-CoV-2 (and SARS-CoV). This cross-neutralizing antibody targets a communal epitope on these viruses and offers potential for prevention and treatment of COVID-19.

3: A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing
more details view paper

Posted to bioRxiv 22 Mar 2020

A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing
73,522 downloads systems biology

David E Gordon, Gwendolyn M. Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Matthew J O'Meara, Jeffrey Z. Guo, Danielle L. Swaney, Tia A. Tummino, Ruth Huttenhain, Robyn M. Kaake, Alicia L. Richards, Beril Tutuncuoglu, Helene Foussard, Jyoti Batra, Kelsey Haas, Maya Modak, Minkyu Kim, Paige Haas, Benjamin J. Polacco, Hannes Braberg, Jacqueline M. Fabius, Manon Eckhardt, Margaret Soucheray, Melanie J. Bennett, Merve Cakir, Michael J. McGregor, Qiongyu Li, Zun Zar Chi Naing, Yuan Zhou, Shiming Peng, Ilsa T. Kirby, James E. Melnyk, John S Chorba, Kevin Lou, Shizhong A. Dai, Wenqi Shen, Ying Shi, Ziyang Zhang, Inigo Barrio-Hernandez, Danish Memon, Claudia Hernandez-Armenta, Christopher J.P. Mathy, Tina Perica, Kala B. Pilla, Sai J. Ganesan, Daniel J. Saltzberg, Rakesh Ramachandran, Xi Liu, Sara B. Rosenthal, Lorenzo Calviello, Srivats Venkataramanan, Jose Liboy-Lugo, Yizhu Lin, Stephanie A. Wankowicz, Markus Bohn, Phillip P. Sharp, Raphael Trenker, Janet M. Young, Devin A. Cavero, Joseph Hiatt, Theo Roth, Ujjwal Rathore, Advait Subramanian, Julia Noack, Mathieu Hubert, Ferdinand Roesch, Thomas Vallet, Björn Meyer, Kris M. White, Lisa Miorin, Oren S. Rosenberg, Kliment A Verba, David Agard, Melanie Ott, Michael Emerman, Davide Ruggero, Adolfo Garc&iacute-Sastre, Natalia Jura, Mark von Zastrow, Jack Taunton, Alan Ashworth, Olivier Schwartz, Marco Vignuzzi, Christophe d'Enfert, Shaeri Mukherjee, Matt Jacobson, Harmit S. Malik, Danica G Fujimori, Trey Ideker, Charles S Craik, Stephen Floor, James S. Fraser, John Gross, Andrej Sali, Tanja Kortemme, Pedro Beltrao, Kevan Shokat, Brian K. Shoichet, Nevan J. Krogan

An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption. There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection. To illuminate this, we cloned, tagged and expressed 26 of the 29 viral proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), which identified 332 high confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 67 druggable human proteins or host factors targeted by 69 existing FDA-approved drugs, drugs in clinical trials and/or preclinical compounds, that we are currently evaluating for efficacy in live SARS-CoV-2 infection assays. The identification of host dependency factors mediating virus infection may provide key insights into effective molecular targets for developing broadly acting antiviral therapeutics against SARS-CoV-2 and other deadly coronavirus strains.

4: Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin
more details view paper

Posted to bioRxiv 23 Jan 2020

Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin
54,347 downloads microbiology

Peng Zhou, Xing-Lou Yang, Xian-Guang Wang, Ben Hu, Lei Zhang, Wei Zhang, Hao-Rui Si, Yan Zhu, Bei Li, Chao-Lin Huang, Hui-Dong Chen, Jing Chen, Yun Luo, Hua Guo, Ren-Di Jiang, Mei-Qin Liu, Ying Chen, Xu-Rui Shen, Xi Wang, Xiao-Shuang Zheng, Kai Zhao, Quan-Jiao Chen, Fei Deng, Lin-Lin Liu, Bing Yan, Fa-Xian Zhan, Yan-Yi Wang, Gengfu Xiao, Zheng-Li Shi

Since the SARS outbreak 18 years ago, a large number of severe acute respiratory syndrome related coronaviruses (SARSr-CoV) have been discovered in their natural reservoir host, bats. Previous studies indicated that some of those bat SARSr-CoVs have the potential to infect humans. Here we report the identification and characterization of a novel coronavirus (nCoV-2019) which caused an epidemic of acute respiratory syndrome in humans, in Wuhan, China. The epidemic, started from December 12th, 2019, has caused 198 laboratory confirmed infections with three fatal cases by January 20th, 2020. Full-length genome sequences were obtained from five patients at the early stage of the outbreak. They are almost identical to each other and share 79.5% sequence identify to SARS-CoV. Furthermore, it was found that nCoV-2019 is 96% identical at the whole genome level to a bat coronavirus. The pairwise protein sequence analysis of seven conserved non-structural proteins show that this virus belongs to the species of SARSr-CoV. The nCoV-2019 virus was then isolated from the bronchoalveolar lavage fluid of a critically ill patient, which can be neutralized by sera from several patients. Importantly, we have confirmed that this novel CoV uses the same cell entry receptor, ACE2, as SARS-CoV.

5: Severe acute respiratory syndrome-related coronavirus – The species and its viruses, a statement of the Coronavirus Study Group
more details view paper

Posted to bioRxiv 11 Feb 2020

Severe acute respiratory syndrome-related coronavirus – The species and its viruses, a statement of the Coronavirus Study Group
53,881 downloads microbiology

Alexander E. Gorbalenya, Susan C. Baker, Ralph S. Baric, Raoul J. de Groot, Christian Drosten, Anastasia A. Gulyaeva, Bart L. Haagmans, Chris Lauber, Andrey M Leontovich, Benjamin W Neuman, Dmitry Penzar, Stanley Perlman, Leo L.M. Poon, Dmitry Samborskiy, Igor A. Sidorov, Isabel Sola, John Ziebuhr

The present outbreak of lower respiratory tract infections, including respiratory distress syndrome, is the third spillover, in only two decades, of an animal coronavirus to humans resulting in a major epidemic. Here, the Coronavirus Study Group (CSG) of the International Committee on Taxonomy of Viruses, which is responsible for developing the official classification of viruses and taxa naming (taxonomy) of the Coronaviridae family, assessed the novelty of the human pathogen tentatively named 2019-nCoV. Based on phylogeny, taxonomy and established practice, the CSG formally recognizes this virus as a sister to severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus and designates it as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To facilitate communication, the CSG further proposes to use the following naming convention for individual isolates: SARS-CoV-2/Isolate/Host/Date/Location. The spectrum of clinical manifestations associated with SARS-CoV-2 infections in humans remains to be determined. The independent zoonotic transmission of SARS-CoV and SARS-CoV-2 highlights the need for studying the entire (virus) species to complement research focused on individual pathogenic viruses of immediate significance. This research will improve our understanding of virus-host interactions in an ever-changing environment and enhance our preparedness for future outbreaks.

6: Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov
more details view paper

Posted to bioRxiv 26 Jan 2020

Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov
33,836 downloads bioinformatics

Yu Zhao, Zixian Zhao, Yujia Wang, Yueqing Zhou, Yu Ma, Wei Zuo

A novel coronavirus (2019-nCov) was identified in Wuhan, Hubei Province, China in December of 2019. This new coronavirus has resulted in thousands of cases of lethal disease in China, with additional patients being identified in a rapidly growing number internationally. 2019-nCov was reported to share the same receptor, Angiotensin-converting enzyme 2 (ACE2), with SARS-Cov. Here based on the public database and the state-of-the-art single-cell RNA-Seq technique, we analyzed the ACE2 RNA expression profile in the normal human lungs. The result indicates that the ACE2 virus receptor expression is concentrated in a small population of type II alveolar cells (AT2). Surprisingly, we found that this population of ACE2-expressing AT2 also highly expressed many other genes that positively regulating viral reproduction and transmission. A comparison between eight individual samples demonstrated that the Asian male one has an extremely large number of ACE2-expressing cells in the lung. This study provides a biological background for the epidemic investigation of the 2019-nCov infection disease, and could be informative for future anti-ACE2 therapeutic strategy development.

7: Discovery of a 382-nt deletion during the early evolution of SARS-CoV-2
more details view paper

Posted to bioRxiv 12 Mar 2020

Discovery of a 382-nt deletion during the early evolution of SARS-CoV-2
30,562 downloads microbiology

Yvonne CF Su, Danielle E. Anderson, Barnaby E Young, Feng Zhu, Martin Linster, Shirin Kalimuddin, Jenny GH Low, Zhuang Yan, Jayanthi Jayakumar, Louisa Sun, Gabriel Z Yan, Ian H Mendenhall, Yee-Sin Leo, David Chien Lye, Lin-Fa Wang, Gavin JD Smith

To date, the SARS-CoV-2 genome has been considered genetically more stable than SARS-CoV or MERS-CoV. Here we report a 382-nt deletion covering almost the entire open reading frame 8 (ORF8) of SARS-CoV-2 obtained from eight hospitalized patients in Singapore. The deletion also removes the ORF8 transcription-regulatory sequence (TRS), which in turn enhances the downstream transcription of the N gene. We also found that viruses with the deletion have been circulating for at least four weeks. During the SARS-CoV outbreak in 2003, a number of genetic variants were observed in the human population, and similar variation has since been observed across SARS-related CoVs in humans and bats. Overwhelmingly these viruses had mutations or deletions in ORF8, that have been associated with reduced replicative fitness of the virus. This is also consistent with the observation that towards the end of the outbreak sequences obtained from human SARS cases possessed an ORF8 deletion that may be associated with host adaptation. We therefore hypothesise that the major deletion revealed in this study may lead to an attenuated phenotype of SARS-CoV-2.

8: Reinfection could not occur in SARS-CoV-2 infected rhesus macaques
more details view paper

Posted to bioRxiv 14 Mar 2020

Reinfection could not occur in SARS-CoV-2 infected rhesus macaques
30,274 downloads microbiology

Linlin Bao, Wei Deng, Hong Gao, Chong Xiao, Jiayi Liu, Jing Xue, Qi Lv, Jiangning Liu, Pin Yu, Yanfeng Xu, Feifei Qi, Yajin Qu, Fengdi Li, Zhiguang Xiang, Haisheng Yu, Shuran Gong, Mingya Liu, Guanpeng Wang, Shunyi Wang, Zhiqi Song, Wenjie Zhao, Yunlin Han, Linna Zhao, Xing Liu, Qiang Wei, Chuan Qin

An outbreak of the Corona Virus Disease 2019 (COVID-19), caused by the severe acute respiratory syndrome CoV-2 (SARS-CoV-2), began in Wuhan and spread globally. Recently, it has been reported that discharged patients in China and elsewhere were testing positive after recovering. However, it remains unclear whether the convalescing patients have a risk of "relapse" or "reinfection". The longitudinal tracking of re-exposure after the disappeared symptoms of the SARS-CoV-2-infected monkeys was performed in this study. We found that weight loss in some monkeys, viral replication mainly in nose, pharynx, lung and gut, as well as moderate interstitial pneumonia at 7 days post-infection (dpi) were clearly observed in rhesus monkeys after the primary infection. After the symptoms were alleviated and the specific antibody tested positively, the half of infected monkeys were rechallenged with the same dose of SARS-CoV-2 strain. Notably, neither viral loads in nasopharyngeal and anal swabs along timeline nor viral replication in all primary tissue compartments at 5 days post-reinfection (dpr) was found in re-exposed monkeys. Combined with the follow-up virologic, radiological and pathological findings, the monkeys with re-exposure showed no recurrence of COVID-19, similarly to the infected monkey without rechallenge. Taken together, our results indicated that the primary SARS-CoV-2 infection could protect from subsequent exposures, which have the reference of prognosis of the disease and vital implications for vaccine design.

9: Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation
more details view paper

Posted to bioRxiv 15 Feb 2020

Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation
24,378 downloads microbiology

Daniel Wrapp, Nianshuang Wang, Kizzmekia S. Corbett, Jory A Goldsmith, Ching-Lin Hsieh, Olubukola Abiona, Barney S Graham, Jason S. McLellan

The outbreak of a novel betacoronavirus (2019-nCov) represents a pandemic threat that has been declared a public health emergency of international concern. The CoV spike (S) glycoprotein is a key target for urgently needed vaccines, therapeutic antibodies, and diagnostics. To facilitate medical countermeasure (MCM) development we determined a 3.5 Å-resolution cryo-EM structure of the 2019-nCoV S trimer in the prefusion conformation. The predominant state of the trimer has one of the three receptor-binding domains (RBDs) rotated up in a receptor-accessible conformation. We also show biophysical and structural evidence that the 2019-nCoV S binds ACE2 with higher affinity than SARS-CoV S. Additionally we tested several published SARS-CoV RBD-specific monoclonal antibodies and found that they do not have appreciable binding to nCoV-2019 S, suggesting antibody cross-reactivity may be limited between the two virus RBDs. The cryo-EM structure of 2019-nCoV S should enable rapid development and evaluation of MCMs to address the ongoing public health crisis.

10: The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells
more details view paper

Posted to bioRxiv 31 Jan 2020

The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells
19,850 downloads molecular biology

Markus Hoffmann, Hannah Kleine-Weber, Nadine Krüger, Marcel Müller, Christian Drosten, Stefan Pöhlmann

The emergence of a novel, highly pathogenic coronavirus, 2019-nCoV, in China, and its rapid national and international spread pose a global health emergency. Coronaviruses use their spike proteins to select and enter target cells and insights into nCoV-2019 spike (S)-driven entry might facilitate assessment of pandemic potential and reveal therapeutic targets. Here, we demonstrate that 2019-nCoV-S uses the SARS-coronavirus receptor, ACE2, for entry and the cellular protease TMPRSS2 for 2019-nCoV-S priming. A TMPRSS2 inhibitor blocked entry and might constitute a treatment option. Finally, we show that the serum from a convalescent SARS patient neutralized 2019-nCoV-S-driven entry. Our results reveal important commonalities between 2019-nCoV and SARS-coronavirus infection, which might translate into similar transmissibility and disease pathogenesis. Moreover, they identify a target for antiviral intervention.

11: Potent human neutralizing antibodies elicited by SARS-CoV-2 infection
more details view paper

Posted to bioRxiv 25 Mar 2020

Potent human neutralizing antibodies elicited by SARS-CoV-2 infection
18,392 downloads immunology

Bin Ju, Qi Zhang, Xiangyang Ge, Ruoke Wang, Jiazhen Yu, Sisi Shan, Bing Zhou, Shuo Song, Xian Tang, Jinfang Yu, Jiwan Ge, Jun Lan, Jing Yuan, Haiyan Wang, Juanjuan Zhao, Shuye Zhang, Youchun Wang, Xuanling Shi, Lei Liu, Xinquan Wang, Zheng Zhang, Linqi Zhang

The pandemic caused by emerging coronavirus SARS-CoV-2 presents a serious global public health emergency in urgent need of prophylactic and therapeutic interventions. SARS CoV-2 cellular entry depends on binding between the viral Spike protein receptor-binding domain (RBD) and the angiotensin converting enzyme 2 (ACE2) target cell receptor. Here, we report on the isolation and characterization of 206 RBD-specific monoclonal antibodies (mAbs) derived from single B cells of eight SARS-CoV-2 infected individuals. These mAbs come from diverse families of antibody heavy and light chains without apparent enrichment for particular families in the repertoire. In samples from one patient selected for further analyses, we found coexistence of germline and germline divergent clones. Both clone types demonstrated impressive binding and neutralizing activity against pseudovirus and live SARS-CoV-2. However, the antibody neutralizing potency is determined by competition with ACE2 receptor for RBD binding. Surprisingly, none of the SARS CoV 2 antibodies nor the infected plasma cross-reacted with RBDs from either SARS CoV or MERS CoV although substantial plasma cross reactivity to the trimeric Spike proteins from SARS-CoV and MERS-CoV was found. These results suggest that antibody response to RBDs is viral species-specific while that cross-recognition target regions outside the RBD. The specificity and neutralizing characteristics of this plasma cross-reactivity requires further investigation. Nevertheless, the diverse and potent neutralizing antibodies identified here are promising candidates for prophylactic and therapeutic SARS-CoV-2 interventions.

12: Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019
more details view paper

Posted to bioRxiv 13 Feb 2020

Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019
15,174 downloads microbiology

Matthew C Wong, Sara J Javornik Cregeen, Nadim J. Ajami, Joseph F. Petrosino

A novel coronavirus (nCoV-2019) was the cause of an outbreak of respiratory illness detected in Wuhan, Hubei Province, China in December of 2019. Genomic analyses of nCoV-2019 determined a 96% resemblance with a coronavirus isolated from a bat in 2013 (RaTG13); however, the receptor binding motif (RBM) of these two genomes share low sequence similarity. This divergence suggests a possible alternative source for the RBM coding sequence in nCoV-2019. We identified high sequence similarity in the RBM between nCoV-2019 and a coronavirus genome reconstructed from a viral metagenomic dataset from pangolins possibly indicating a more complex origin for nCoV-2019.

13: Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China
more details view paper

Posted to bioRxiv 18 Feb 2020

Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China
13,193 downloads microbiology

Tommy Tsan-Yuk Lam, Marcus Ho-Hin Shum, Hua-Chen Zhu, Yi-Gang Tong, Xue-Bing Ni, Yun-Shi Liao, Wei Wei, William Yiu-Man Cheung, Wen-Juan Li, Lian-Feng Li, Gabriel M. Leung, Edward Holmes, Yan-Ling Hu, Yi Guan

The ongoing outbreak of viral pneumonia in China and beyond is associated with a novel coronavirus, provisionally termed 2019-nCoV. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection. Although bats are likely reservoir hosts for 2019-nCoV, the identity of any intermediate host facilitating transfer to humans is unknown. Here, we report the identification of 2019-nCoV related coronaviruses in pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin associated CoVs that belong to two sub-lineages of 2019-nCoV related coronaviruses, including one very closely related to 2019-nCoV in the receptor-binding domain. The discovery of multiple lineages of pangolin coronavirus and their similarity to 2019-nCoV suggests that pangolins should be considered as possible intermediate hosts for this novel human virus and should be removed from wet markets to prevent zoonotic transmission.

14: Time-varying transmission dynamics of Novel Coronavirus Pneumonia in China
more details view paper

Posted to bioRxiv 26 Jan 2020

Time-varying transmission dynamics of Novel Coronavirus Pneumonia in China
12,864 downloads systems biology

Tao Liu, Jianxiong Hu, Jianpeng Xiao, Guanhao He, Min Kang, Zuhua Rong, Lifeng Lin, Haojie Zhong, Qiong Huang, Aiping Deng, Weilin Zeng, Xiaohua Tan, Siqing Zeng, Zhihua Zhu, Jiansen Li, Dexin Gong, Donghua Wan, Shaowei Chen, Lingchuan Guo, Yan Li, Limei Sun, Wenjia Liang, Tie Song, Jianfeng He, Wenjun Ma

Objectives: We aimed to estimate the basic and time-varying transmission dynamics of NCP across China, and compared them with SARS. Methods: Data on NCP cases by February 7, 2020 were collected from epidemiological investigations or official websites. Data on severe acute respiratory syndrome (SARS) cases in Guangdong Province, Beijing and HongKong during 2002-2003 were also obtained. We estimated the doubling time, basic reproduction number (R0) and time-varying reproduction number (Rt) of NCP and SARS. Measurements and main results: As of February 7, 2020, 34,598 NCP cases were identified in China, and daily confirmed cases decreased after February 4. The doubling time of NCP nationwide was 2.4 days which was shorter than that of SARS in Guangdong (14.3 days), Hong Kong (5.7 days) and Beijing (12.4 days). The R0 of NCP cases nationwide and in Wuhan were 4.5 and 4.4 respectively, which were higher than R0 of SARS in Guangdong(R0=2.3), Hongkong (R0=2.3), and Beijing (R0=2.6). The Rt for NCP continuously decreased especially after January 16 nationwide and in Wuhan. The R0 for secondary NCP cases in Guangdong was 0.6, and the Rt values were less than 1 during the epidemic. Conclusions: NCP may have a higher transmissibility than SARS, and the efforts of containing the outbreak are effective. However, the efforts are needed to persist in for reducing time-varying reproduction number below one.

15: Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event
more details view paper

Posted to bioRxiv 27 Jan 2020

Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event
11,875 downloads microbiology

D. Paraskevis, E.G. Kostaki, G. Magiorkinis, G. Panayiotakopoulos, S. Tsiodras

Background: A novel coronavirus (2019-nCoV) associated with human to human transmission and severe human infection has been recently reported from the city of Wuhan in China. Our objectives were to characterize the genetic relationships of the 2019-nCoV and to search for putative recombination within the subgenus of sarbecovirus. Methods: Putative recombination was investigated by RDP4 and Simplot v3.5.1 and discordant phylogenetic clustering in individual genomic fragments was confirmed by phylogenetic analysis using maximum likelihood and Bayesian methods. Results: Our analysis suggests that the 2019-nCoV although closely related to BatCoV RaTG13 sequence throughout the genome (sequence similarity 96.3%), shows discordant clustering with the Bat-SARS-like coronavirus sequences. Specifically, in the 5′-part spanning the first 11,498 nucleotides and the last 3′-part spanning 24,341-30,696 positions, 2019-nCoV and RaTG13 formed a single cluster with Bat-SARS-like coronavirus sequences, whereas in the middle region spanning the 3′-end of ORF1a, the ORF1b and almost half of the spike regions, 2019-nCoV and RaTG13 grouped in a separate distant lineage within the sarbecovirus branch. Conclusions: The levels of genetic similarity between the 2019-nCoV and RaTG13 suggest that the latter does not provide the exact variant that caused the outbreak in humans, but the hypothesis that 2019-nCoV has originated from bats is very likely. We show evidence that the novel coronavirus (2019-nCov) is not-mosaic consisting in almost half of its genome of a distinct lineage within the betacoronavirus. These genomic features and their potential association with virus characteristics and virulence in humans need further attention.

16: Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs
more details view paper

Posted to bioRxiv 20 Mar 2020

Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs
11,609 downloads microbiology

Sangeun Jeon, Meehyun Ko, Jihye Lee, Inhee Choi, Soo Young Byun, Soonju Park, David Shum, Seungtaek Kim

COVID-19 is an emerging infectious disease and was recently declared as a pandemic by WHO. Currently, there is no vaccine or therapeutic available for this disease. Drug repositioning represents the only feasible option to address this global challenge and a panel of 48 FDA-approved drugs that have been pre-selected by an assay of SARS-CoV was screened to identify potential antiviral drug candidates against SARS-CoV-2 infection. We found a total of 24 drugs which exhibited antiviral efficacy (0.1 μM < IC50 < 10 μM) against SARS-CoV-2. In particular, two FDA-approved drugs – niclosamide and ciclesonide – were notable in some respects. These drugs will be tested in an appropriate animal model for their antiviral activities. In near future, these already FDA-approved drugs could be further developed following clinical trials in order to provide additional therapeutic options for patients with COVID-19.

17: An integrated brain-machine interface platform with thousands of channels
more details view paper

Posted to bioRxiv 17 Jul 2019

An integrated brain-machine interface platform with thousands of channels
10,353 downloads neuroscience

Elon Musk, Neuralink

Brain-machine interfaces (BMIs) hold promise for the restoration of sensory and motor function and the treatment of neurological disorders, but clinical BMIs have not yet been widely adopted, in part because modest channel counts have limited their potential. In this white paper, we describe Neuralink’s first steps toward a scalable high-bandwidth BMI system. We have built arrays of small and flexible electrode “threads”, with as many as 3,072 electrodes per array distributed across 96 threads. We have also built a neurosurgical robot capable of inserting six threads (192 electrodes) per minute. Each thread can be individually inserted into the brain with micron precision for avoidance of surface vasculature and targeting specific brain regions. The electrode array is packaged into a small implantable device that contains custom chips for low-power on-board amplification and digitization: the package for 3,072 channels occupies less than (23 × 18.5 × 2) mm3. A single USB-C cable provides full-bandwidth data streaming from the device, recording from all channels simultaneously. This system has achieved a spiking yield of up to 70% in chronically implanted electrodes. Neuralink’s approach to BMI has unprecedented packaging density and scalability in a clinically relevant package.

18: Aerodynamic Characteristics and RNA Concentration of SARS-CoV-2 Aerosol in Wuhan Hospitals during COVID-19 Outbreak
more details view paper

Posted to bioRxiv 10 Mar 2020

Aerodynamic Characteristics and RNA Concentration of SARS-CoV-2 Aerosol in Wuhan Hospitals during COVID-19 Outbreak
9,811 downloads microbiology

Yuan Liu, Zhi Ning, Yu Chen, Ming Guo, Jianguo Wu, Nirmal Kumar Gali, Li Sun, Yusen Duan, Jing Cai, Dane Westerdahl, Xinjin Liu, Kin-fai Ho, Haidong Kan, Qingyan Fu, Ke Lan

Background: The ongoing outbreak of COVID-19 has spread rapidly and sparked global concern. While the transmission of SARS-CoV-2 through human respiratory droplets and contact with infected persons is clear, the aerosol transmission of SARS-CoV-2 has been little studied. Methods: Thirty-five aerosol samples of three different types (total suspended particle, size segregated and deposition aerosol) were collected in Patient Areas (PAA) and Medical Staff Areas (MSA) of Renmin Hospital of Wuhan University (Renmin) and Wuchang Fangcang Field Hospital (Fangcang), and Public Areas (PUA) in Wuhan, China during COVID-19 outbreak. A robust droplet digital polymerase chain reaction (ddPCR) method was employed to quantitate the viral SARS-CoV-2 RNA genome and determine aerosol RNA concentration. Results: The ICU, CCU and general patient rooms inside Renmin, patient hall inside Fangcang had undetectable or low airborne SARS-CoV-2 concentration but deposition samples inside ICU and air sample in Fangcang patient toilet tested positive. The airborne SARS-CoV-2 in Fangcang MSA had bimodal distribution with higher concentration than those in Renmin during the outbreak but turned negative after patients number reduced and rigorous sanitization implemented. PUA had undetectable airborne SARS-CoV-2 concentration but obviously increased with accumulating crowd flow. Conclusions: Room ventilation, open space, proper use and disinfection of toilet can effectively limit aerosol transmission of SARS-CoV-2. Gathering of crowds with asymptomatic carriers is a potential source of airborne SARS-CoV-2. The virus aerosol deposition on protective apparel or floor surface and their subsequent resuspension is a potential transmission pathway and effective sanitization is critical in minimizing aerosol transmission of SARS-CoV-2.

19: SARS-CoV-2 invades host cells via a novel route: CD147-spike protein
more details view paper

Posted to bioRxiv 14 Mar 2020

SARS-CoV-2 invades host cells via a novel route: CD147-spike protein
9,519 downloads microbiology

Ke Wang, Wei Chen, Yu-Sen Zhou, Jian-Qi Lian, Zheng Zhang, Peng Du, Li Gong, Yang Zhang, Hong-Yong Cui, Jie-Jie Geng, Bin Wang, Xiu-Xuan Sun, Chun-Fu Wang, Xu Yang, Peng Lin, Yong-Qiang Deng, Ding Wei, Xiang-Min Yang, Yu-Meng Zhu, Kui Zhang, Zhao-Hui Zheng, Jin-Lin Miao, Ting Guo, Ying Shi, Jun Zhang, Ling Fu, Qing-Yi Wang, Huijie Bian, Ping Zhu, Zhi-Nan Chen

Currently, COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widely spread around the world; nevertheless, so far there exist no specific antiviral drugs for treatment of the disease, which poses great challenge to control and contain the virus. Here, we reported a research finding that SARS-CoV-2 invaded host cells via a novel route of CD147-spike protein (SP). SP bound to CD147, a receptor on the host cells, thereby mediating the viral invasion. Our further research confirmed this finding. First, in vitro antiviral tests indicated Meplazumab, an anti-CD147 humanized antibody, significantly inhibited the viruses from invading host cells, with an EC50 of 24.86 μg/mL and IC50 of 15.16 μg/mL. Second, we validated the interaction between CD147 and SP, with an affinity constant of 1.85E-07M. Co-Immunoprecipitation and ELISA also confirmed the binding of the two proteins. Finally, the localization of CD147 and SP was observed in SARS-CoV-2 infected Vero E6 cells by immuno-electron microscope. Therefore, the discovery of the new route CD147-SP for SARS-CoV-2 invading host cells provides a critical target for development of specific antiviral drugs.

20: A mysterious 80 nm amoeba virus with a near-complete "ORFan genome" challenges the classification of DNA viruses
more details view paper

Posted to bioRxiv 28 Jan 2020

A mysterious 80 nm amoeba virus with a near-complete "ORFan genome" challenges the classification of DNA viruses
9,258 downloads microbiology

Paulo V. M. Boratto, Graziele P. Oliveira, Talita B. Machado, Ana Cláudia S. P. Andrade, Jean-Pierre Baudoin, Thomas Klose, Frederik Schulz, Saïd Azza, Philippe Decloquement, Eric Chabrière, Philippe Colson, Anthony Levasseur, Bernard La Scola, Jônatas S. Abrahão

Here we report the discovery of Yaravirus, a new lineage of amoebal virus with a puzzling origin and phylogeny. Yaravirus presents 80 nm-sized particles and a 44,924 bp dsDNA genome encoding for 74 predicted proteins. More than 90% (68) of Yaravirus predicted genes have never been described before, representing ORFans. Only six genes had distant homologs in public databases: an exonuclease/recombinase, a packaging-ATPase, a bifunctional DNA primase/polymerase and three hypothetical proteins. Furthermore, we were not able to retrieve viral genomes closely related to Yaravirus in 8,535 publicly available metagenomes spanning diverse habitats around the globe. The Yaravirus genome also contained six types of tRNAs that did not match commonly used codons. Proteomics revealed that Yaravirus particles contain 26 viral proteins, one of which potentially representing a novel capsid protein with no significant homology with NCLDV major capsid proteins but with a predicted double-jelly roll domain. Yaravirus expands our knowledge of the diversity of DNA viruses. The phylogenetic distance between Yaravirus and all other viruses highlights our still preliminary assessment of the genomic diversity of eukaryotic viruses, reinforcing the need for the isolation of new viruses of protists.

Previous page 1 2 3 4 5 . . . 3775 Next page

PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News