Rxivist logo

Rxivist combines preprints from bioRxiv with data from Twitter to help you find the papers being discussed in your field. Currently indexing 84,649 bioRxiv papers from 364,232 authors.

Most downloaded bioRxiv papers, since beginning of last month

82,567 results found. For more information, click each entry to expand.

1: Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2
more details view paper

Posted to bioRxiv 30 Apr 2020

Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2
184,113 downloads evolutionary biology

Bette T. Korber, WM Fischer, S Gnanakaran, H Yoon, J Theiler, W Abfalterer, B Foley, EE Giorgi, Tanmoy Bhattacharya, MD Parker, DG Partridge, CM Evans, TM Freeman, Thushan I. de Silva, on behalf of the Sheffield COVID-19 Genomics Group, CC LaBranche, David Montefiori

We have developed an analysis pipeline to facilitate real-time mutation tracking in SARS-CoV-2, focusing initially on the Spike (S) protein because it mediates infection of human cells and is the target of most vaccine strategies and antibody-based therapeutics. To date we have identified fourteen mutations in Spike that are accumulating. Mutations are considered in a broader phylogenetic context, geographically, and over time, to provide an early warning system to reveal mutations that may confer selective advantages in transmission or resistance to interventions. Each one is evaluated for evidence of positive selection, and the implications of the mutation are explored through structural modeling. The mutation Spike D614G is of urgent concern; after beginning to spread in Europe in early February, when introduced to new regions it repeatedly and rapidly becomes the dominant form. Also, we present evidence of recombination between locally circulating strains, indicative of multiple strain infections. These finding have important implications for SARS-CoV-2 transmission, pathogenesis and immune interventions. ### Competing Interest Statement The authors have declared no competing interest.

2: Reversing age: dual species measurement of epigenetic age with a single clock
more details view paper

Posted to bioRxiv 08 May 2020

Reversing age: dual species measurement of epigenetic age with a single clock
89,768 downloads developmental biology

Steve Horvath, Kavita Singh, Ken Raj, Shraddha Khairnar, Akshay Sanghavi, Agnivesh Shrivastava, Joseph A. Zoller, Caesar Z Li, Claudia B. Herenu, Martina Canatelli-Mallat, Marianne Lehmann, Leah C. Solberg Woods, Angel Garcia Martinez, Tengfei Wang, Priscila Chiavellini, Andrew J. Levine, Hao Chen, Rodolfo G Goya, Harold L Katcher

Young blood plasma is known to confer beneficial effects on various organs in mice. However, it was not known whether young plasma rejuvenates cells and tissues at the epigenetic level; whether it alters the epigenetic clock, which is a highly-accurate molecular biomarker of aging. To address this question, we developed and validated six different epigenetic clocks for rat tissues that are based on DNA methylation values derived from n=593 tissue samples. As indicated by their respective names, the rat pan-tissue clock can be applied to DNA methylation profiles from all rat tissues, while the rat brain-, liver-, and blood clocks apply to the corresponding tissue types. We also developed two epigenetic clocks that apply to both human and rat tissues by adding n=850 human tissue samples to the training data. We employed these six clocks to investigate the rejuvenation effects of a plasma fraction treatment in different rat tissues. The treatment more than halved the epigenetic ages of blood, heart, and liver tissue. A less pronounced, but statistically significant, rejuvenation effect could be observed in the hypothalamus. The treatment was accompanied by progressive improvement in the function of these organs as ascertained through numerous biochemical/physiological biomarkers and behavioral responses to assess cognitive functions. Cellular senescence, which is not associated with epigenetic aging, was also considerably reduced in vital organs. Overall, this study demonstrates that a plasma-derived treatment markedly reverses aging according to epigenetic clocks and benchmark biomarkers of aging. ### Competing Interest Statement Several authors are founders, owners, employees (Harold Katcher and Akshay Sanghavi) or consultants of Nugenics Research (Steve Horvath and Agnivesh Shrivastava) which plans to commercialize the "Elixir" treatment. Other authors (Kavita Singh, Shraddha Khairnar) received financial support from Nugenics Research. The other authors do not have conflict of interest.

3: ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques
more details view paper

Posted to bioRxiv 13 May 2020

ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques
56,331 downloads microbiology

Neeltje van Doremalen, Teresa Lambe, Alexandra Spencer, Sandra Belij-Rammerstorfer, Jyothi N. Purushotham, Julia R. Port, Victoria Avanzato, Trenton Bushmaker, Amy Flaxman, Marta Ulaszewska, Friederike Feldmann, Elizabeth R. Allen, Hannah Sharpe, Jonathan Schulz, Myndi Holbrook, Atsushi Okumura, Kimberly Meade-White, Lizzette Pérez-Pérez, Cameron Bissett, Ciaran Gilbride, Brandi N. Williamson, Rebecca Rosenke, Dan Long, Alka Ishwarbhai, Reshma Kailath, Louisa Rose, Susan Morris, Claire Powers, Jamie Lovaglio, Patrick W. Hanley, Dana Scott, Greg Saturday, Emmie de Wit, Sarah C. Gilbert, Vincent J. Munster

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in December 20191,2 and is responsible for the COVID-19 pandemic3. Vaccines are an essential countermeasure urgently needed to control the pandemic4. Here, we show that the adenovirus-vectored vaccine ChAdOx1 nCoV-19, encoding the spike protein of SARS-CoV-2, is immunogenic in mice, eliciting a robust humoral and cell-mediated response. This response was not Th2 dominated, as demonstrated by IgG subclass and cytokine expression profiling. A single vaccination with ChAdOx1 nCoV-19 induced a humoral and cellular immune response in rhesus macaques. We observed a significantly reduced viral load in bronchoalveolar lavage fluid and respiratory tract tissue of vaccinated animals challenged with SARS-CoV-2 compared with control animals, and no pneumonia was observed in vaccinated rhesus macaques. Importantly, no evidence of immune-enhanced disease following viral challenge in vaccinated animals was observed. ChAdOx1 nCoV-19 is currently under investigation in a phase I clinical trial. Safety, immunogenicity and efficacy against symptomatic PCR-positive COVID-19 disease will now be assessed in randomised controlled human clinical trials. ### Competing Interest Statement SCG is a board member of Vaccitech and named as an inventor on a patent covering use of ChAdOx1-vectored vaccines and a patent application covering a SARS-CoV-2 (nCoV-19) vaccine. Teresa Lambe is named as an inventor on a patent application covering a SARS-CoV-2 (nCoV-19) vaccine. The remaining authors declare no competing interests.

4: Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag
more details view paper

Posted to bioRxiv 31 Jan 2020

Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag
30,926 downloads evolutionary biology

Prashant Pradhan, Ashutosh Kumar Pandey, Akhilesh Mishra, Parul Gupta, Praveen Kumar Tripathi, Manoj Balakrishnan Menon, James Gomes, Perumal Vivekanandan, Bishwajit Kundu

This paper has been withdrawn by its authors. They intend to revise it in response to comments received from the research community on their technical approach and their interpretation of the results. If you have any questions, please contact the corresponding author.

5: SARS-CoV-2 is well adapted for humans. What does this mean for re-emergence?
more details view paper

Posted to bioRxiv 02 May 2020

SARS-CoV-2 is well adapted for humans. What does this mean for re-emergence?
16,138 downloads evolutionary biology

Shing Hei Zhan, Benjamin E. Deverman, Yujia Alina Chan

In a side-by-side comparison of evolutionary dynamics between the 2019/2020 SARS-CoV-2 and the 2003 SARS-CoV, we were surprised to find that SARS-CoV-2 resembles SARS-CoV in the late phase of the 2003 epidemic after SARS-CoV had developed several advantageous adaptations for human transmission. Our observations suggest that by the time SARS-CoV-2 was first detected in late 2019, it was already pre-adapted to human transmission to an extent similar to late epidemic SARS-CoV. However, no precursors or parallel branches of evolution stemming from a less human-adapted SARS-CoV-2-like virus have been detected. The sudden appearance of a highly infectious SARS-CoV-2 presents a major cause for concern that should motivate stronger international efforts to identify the source and prevent near future re-emergence. Any existing pools of SARS-CoV-2 progenitors would be particularly dangerous if similarly well adapted for human transmission. To look for clues regarding intermediate hosts, we analyze recent key findings relating to how SARS-CoV-2 could have evolved and adapted for human transmission, and examine the environmental samples from the Wuhan Huanan seafood market. Importantly, the market samples are genetically identical to human SARS-CoV-2 isolates and were therefore most likely from human sources. We conclude by describing and advocating for measured and effective approaches implemented in the 2002-2004 SARS outbreaks to identify lingering population(s) of progenitor virus. ### Competing Interest Statement Shing Hei Zhan is a Co-founder and lead bioinformatics scientist at Fusion Genomics Corporation, which develops molecular diagnostic assays for infectious diseases.

6: Introductions and early spread of SARS-CoV-2 in France
more details view paper

Posted to bioRxiv 24 Apr 2020

Introductions and early spread of SARS-CoV-2 in France
15,145 downloads genomics

Fabiana Gámbaro, Sylvie Behillil, Artem Baidaliuk, Flora Donati, Mélanie Albert, Andreea Alexandru, Maud Vanpeene, Méline Bizard, Angela Brisebarre, Marion Barbet, Fawzi Derrar, Sylvie van der Werf, Vincent Enouf, Etienne Simon-Loriere

Following the emergence of coronavirus disease (COVID-19) in Wuhan, China in December 2019, specific COVID-19 surveillance was launched in France on January 10, 2020. Two weeks later, the first three imported cases of COVID-19 into Europe were diagnosed in France. We sequenced 97 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from samples collected between January 24 and March 24, 2020 from infected patients in France. Phylogenetic analysis identified several early independent SARS-CoV-2 introductions without local transmission, highlighting the efficacy of the measures taken to prevent virus spread from symptomatic cases. In parallel, our genomic data reveals the later predominant circulation of a major clade in many French regions, and implies local circulation of the virus in undocumented infections prior to the wave of COVID-19 cases. This study emphasizes the importance of continuous and geographically broad genomic sequencing and calls for further efforts with inclusion of asymptomatic infections. ### Competing Interest Statement The authors have declared no competing interest.

7: A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing
more details view paper

Posted to bioRxiv 22 Mar 2020

A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing
13,823 downloads systems biology

David E Gordon, Gwendolyn M. Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Matthew J. O’Meara, Jeffrey Z. Guo, Danielle L. Swaney, Tia A. Tummino, Ruth Huettenhain, Robyn M. Kaake, Alicia L. Richards, Beril Tutuncuoglu, Helene Foussard, Jyoti Batra, Kelsey Haas, Maya Modak, Minkyu Kim, Paige Haas, Benjamin J. Polacco, Hannes Braberg, Jacqueline M. Fabius, Manon Eckhardt, Margaret Soucheray, Melanie J. Bennett, Merve Cakir, Michael J. McGregor, Qiongyu Li, Zun Zar Chi Naing, Yuan Zhou, Shiming Peng, Ilsa T. Kirby, James E. Melnyk, John S. Chorba, Kevin Lou, Shizhong A. Dai, Wenqi Shen, Ying Shi, Ziyang Zhang, Inigo Barrio-Hernandez, Danish Memon, Claudia Hernandez-Armenta, Christopher J.P. Mathy, Tina Perica, Kala B. Pilla, Sai J. Ganesan, Daniel J. Saltzberg, Rakesh Ramachandran, Xi Liu, Sara B. Rosenthal, Lorenzo Calviello, Srivats Venkataramanan, Jose Liboy-Lugo, Yizhu Lin, Stephanie A. Wankowicz, Markus Bohn, Phillip P. Sharp, Raphael Trenker, Janet M. Young, Devin A. Cavero, Joseph Hiatt, Theodore L. Roth, Ujjwal Rathore, Advait Subramanian, Julia Noack, Mathieu Hubert, Ferdinand Roesch, Thomas Vallet, Björn Meyer, Kris M. White, Lisa Miorin, Oren S. Rosenberg, Kliment A Verba, David A. Agard, Melanie Ott, Michael Emerman, Davide Ruggero, Adolfo García-Sastre, Natalia Jura, Mark von Zastrow, Jack Taunton, Alan Ashworth, Olivier Schwartz, Marco Vignuzzi, Christophe d’Enfert, Shaeri Mukherjee, Matt Jacobson, Harmit S. Malik, Danica Galonić Fujimori, Trey Ideker, Charles S. Craik, Jennifer A. Doudna, James S. Fraser, John Gross, Andrej Sali, Tanja Kortemme, Pedro Beltrao, Kevan Shokat, Brian K. Shoichet, Nevan J. Krogan

An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption[1][1],[2][2]. There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection. To illuminate this, we cloned, tagged and expressed 26 of the 29 viral proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), which identified 332 high confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 67 druggable human proteins or host factors targeted by 69 existing FDA-approved drugs, drugs in clinical trials and/or preclinical compounds, that we are currently evaluating for efficacy in live SARS-CoV-2 infection assays. The identification of host dependency factors mediating virus infection may provide key insights into effective molecular targets for developing broadly acting antiviral therapeutics against SARS-CoV-2 and other deadly coronavirus strains. * HC-PPIs : High confidence protein-protein interactions PPIs : protein-protein interaction AP-MS : affinity purification-mass spectrometry COVID-19 : Coronavirus Disease-2019 ACE2 : angiotensin converting enzyme 2 Orf : open reading frame Nsp3 : papain-like protease Nsp5 : main protease Nsp : nonstructural protein TPM : transcripts per million [1]: #ref-1 [2]: #ref-2

8: Convergent Antibody Responses to SARS-CoV-2 Infection in Convalescent Individuals
more details view paper

Posted to bioRxiv 15 May 2020

Convergent Antibody Responses to SARS-CoV-2 Infection in Convalescent Individuals
13,364 downloads immunology

Davide F. Robbiani, Christian Gaebler, Frauke Muecksch, Julio Cetrulo Lorenzi, Zijun Wang, Alice Cho, Marianna Agudelo, Christopher Barnes, Shlomo Finkin, Thomas Hagglof, Thiago Oliveira, Charlotte Viant, Arlene Hurley, Katrina Millard, Rhonda Kost, Melissa Cipolla, Anna Gazumyan, Kristie Gordon, Filippo Bianchini, Spencer Chen, Victor Ramos, Roshni Patel, Juan Dizon, Irina Shimeliovich, Pilar Mendoza, Harald Hartweger, Lilian Nogueira, Maggi Pack, Jill Horowitz, Fabian Schmidt, Yiska Weisblum, Hans-Heinrich Hoffmann, Eleftherios Michailidis, Alison Ashbrook, Eric F. Waltari, John Pak, Kathryn Huey-Tubman, Nicholas Koranda, Pauline Hoffman, Anthony West, Charles Rice, Theodora Hatziioannou, Pamela Bjorkman, Paul Bieniasz, Marina Caskey, Michel Nussenzweig

During the COVID-19 pandemic, SARS-CoV-2 infected millions of people and claimed hundreds of thousands of lives. Virus entry into cells depends on the receptor binding domain (RBD) of the SARS-CoV-2 spike protein (S). Although there is no vaccine, it is likely that antibodies will be essential for protection. However, little is known about the human antibody response to SARS-CoV-2. Here we report on 149 COVID-19 convalescent individuals. Plasmas collected an average of 39 days after the onset of symptoms had variable half-maximal neutralizing titers ranging from undetectable in 33% to below 1:1000 in 79%, while only 1% showed titers >1:5000. Antibody cloning revealed expanded clones of RBD-specific memory B cells expressing closely related antibodies in different individuals. Despite low plasma titers, antibodies to three distinct epitopes on RBD neutralized at half-maximal inhibitory concentrations (IC50s) as low as single digit ng/mL. Thus, most convalescent plasmas obtained from individuals who recover from COVID-19 do not contain high levels of neutralizing activity. Nevertheless, rare but recurring RBD-specific antibodies with potent antiviral activity were found in all individuals tested, suggesting that a vaccine designed to elicit such antibodies could be broadly effective. ### Competing Interest Statement In connection with this work The Rockefeller University has filed a provisional patent application on which D.F.R. and M.C.N are inventors.

9: An integrated brain-machine interface platform with thousands of channels
more details view paper

Posted to bioRxiv 17 Jul 2019

An integrated brain-machine interface platform with thousands of channels
12,078 downloads neuroscience

Elon Musk, Neuralink

Brain-machine interfaces (BMIs) hold promise for the restoration of sensory and motor function and the treatment of neurological disorders, but clinical BMIs have not yet been widely adopted, in part because modest channel counts have limited their potential. In this white paper, we describe Neuralink’s first steps toward a scalable high-bandwidth BMI system. We have built arrays of small and flexible electrode “threads”, with as many as 3,072 electrodes per array distributed across 96 threads. We have also built a neurosurgical robot capable of inserting six threads (192 electrodes) per minute. Each thread can be individually inserted into the brain with micron precision for avoidance of surface vasculature and targeting specific brain regions. The electrode array is packaged into a small implantable device that contains custom chips for low-power on-board amplification and digitization: the package for 3,072 channels occupies less than (23 × 18.5 × 2) mm3. A single USB-C cable provides full-bandwidth data streaming from the device, recording from all channels simultaneously. This system has achieved a spiking yield of up to 70% in chronically implanted electrodes. Neuralink’s approach to BMI has unprecedented packaging density and scalability in a clinically relevant package.

10: ACE2 and TMPRSS2 are expressed on the human ocular surface, suggesting susceptibility to SARS-CoV-2 infection
more details view paper

Posted to bioRxiv 09 May 2020

ACE2 and TMPRSS2 are expressed on the human ocular surface, suggesting susceptibility to SARS-CoV-2 infection
10,602 downloads pathology

Lingli Zhou, Zhenhua Xu, Gianni M. Castiglione, Uri S Soiberman, Charles G. Eberhart, Elia J Duh

Purpose: Conjunctival signs and symptoms are observed in a subset of patients with COVID-19, and SARS-CoV-2 has been detected in tears, raising concerns regarding the eye both as a portal of entry and carrier of the virus. The purpose of this study was to determine whether ocular surface cells possess the key factors required for cellular susceptibility to SARS-CoV-2 entry/infection. Methods: We analyzed human post-mortem eyes as well as surgical specimens for the expression of ACE2 (the receptor for SARS-CoV-2) and TMPRSS2, a cell surface-associated protease that facilitates viral entry following binding of the viral spike protein to ACE2. Results: Across all eye specimens, immunohistochemical analysis revealed expression of ACE2 in the conjunctiva, limbus, and cornea, with especially prominent staining in the superficial conjunctival and corneal epithelial surface. Surgical conjunctival specimens also showed expression of ACE2 in the conjunctival epithelium, especially prominent in the superficial epithelium, as well as the substantia propria. All eye and conjunctival specimens also expressed TMPRSS2. Finally, western blot analysis of protein lysates from human corneal epithelium obtained during refractive surgery confirmed expression of ACE2 and TMPRSS2. Conclusions: Together, these results indicate that ocular surface cells including conjunctiva are susceptible to infection by SARS-CoV-2, and could therefore serve as a portal of entry as well as a reservoir for person-to-person transmission of this virus. This highlights the importance of safety practices including face masks and ocular contact precautions in preventing the spread of COVID-19 disease. ### Competing Interest Statement The authors have declared no competing interest.

11: Rapid development of an inactivated vaccine for SARS-CoV-2
more details view paper

Posted to bioRxiv 19 Apr 2020

Rapid development of an inactivated vaccine for SARS-CoV-2
9,906 downloads microbiology

Qiang Gao, Linlin Bao, Haiyan Mao, Lin Wang, Kangwei Xu, Minnan Yang, Yajing Li, Ling Zhu, Nan Wang, Zhe Lv, Hong Gao, Xiaoqin Ge, Biao Kan, Yaling Hu, Jiangning Liu, Fang Cai, Deyu Jiang, Yanhui Yin, Chengfeng Qin, Jing Li, Xuejie Gong, Xiuyu Lou, Wen Shi, Dongdong Wu, Hengming Zhang, Lang Zhu, Wei Deng, Yurong Li, Jinxing Lu, Changgui Li, Xiangxi Wang, Weidong Yin, Yanjun Zhang, Chuan Qin

The COVID-19 caused by SARS-CoV-2 has brought about an unprecedented crisis, taking a heavy toll on human health, lives as well as the global economy. There are no SARS-CoV-2-specific treatments or vaccines available due to the novelty of this virus. Hence, rapid development of effective vaccines against SARS-CoV-2 is urgently needed. Here we developed a pilot-scale production of a purified inactivated SARS-CoV-2 virus vaccine candidate (PiCoVacc), which induced SARS-CoV-2-specific neutralizing antibodies in mice, rats and non-human primates. These antibodies potently neutralized 10 representative SARS-CoV-2 strains, indicative of a possible broader neutralizing ability against SARS-CoV-2 strains circulating worldwide. Immunization with two different doses (3 μg or 6 μg per dose) provided partial or complete protection in macaques against SARS-CoV-2 challenge, respectively, without any antibody-dependent enhancement of infection. Systematic evaluation of PiCoVacc via monitoring clinical signs, hematological and biochemical index, and histophathological analysis in macaques suggests that it is safe. These data support the rapid clinical development of SARS-CoV-2 vaccines for humans. ### Competing Interest Statement The authors have declared no competing interest.

12: Pre-existing and de novo humoral immunity to SARS-CoV-2 in humans
more details view paper

Posted to bioRxiv 15 May 2020

Pre-existing and de novo humoral immunity to SARS-CoV-2 in humans
9,615 downloads immunology

Kevin Ng, Nikhil Faulkner, Georgina Cornish, Annachiara Rosa, Christopher Earl, Antoni Wrobel, Donald Benton, Chloe Roustan, William Bolland, Rachael Thompson, Ana Agua-Doce, Philip Hobson, Judith Heaney, Hannah Rickman, Stavroula Paraskevopoulou, Catherine F Houlihan, Kirsty Thomson, Emilie Sanchez, Gee Yen Shin, Moira J Spyer, Philip A Walker, Svend Kjaer, Andrew Riddell, Rupert Beale, Charles Swanton, Sonia Gandhi, Brigitta Stockinger, Steve Gamblin, Laura E McCoy, Peter Cherepanov, Eleni Nastouli, George Kassiotis

Several related human coronaviruses (HCoVs) are endemic in the human population, causing mild respiratory infections. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiologic agent of Coronavirus disease 2019 (COVID-19), is a recent zoonotic infection that has quickly reached pandemic spread. Zoonotic introduction of novel coronaviruses is thought to occur in the absence of pre-existing immunity in the target human population. Using diverse assays for detection of antibodies reactive with the SARS-CoV-2 Spike (S) glycoprotein, we demonstrate the presence of pre-existing immunity in uninfected and unexposed humans to the new coronavirus. SARS-CoV-2 S-reactive antibodies, exclusively of the IgG class, were readily detectable by a sensitive flow cytometry-based method in SARS-CoV-2-uninfected individuals with recent HCoV infection and targeted the S2 subunit. In contrast, SARS-CoV-2 infection induced higher titres of SARS-CoV-2 S-reactive IgG antibodies, as well as concomitant IgM and IgA antibodies throughout the observation period of 6 weeks since symptoms onset. HCoV patient sera also variably reacted with SARS-CoV-2 S and nucleocapsid (N), but not with the S1 subunit or the receptor binding domain (RBD) of S on standard enzyme immunoassays. Notably, HCoV patient sera exhibited specific neutralising activity against SARS-CoV-2 S pseudotypes, according to levels of SARS-CoV-2 S-binding IgG and with efficiencies comparable to those of COVID-19 patient sera. Distinguishing pre-existing and de novo antibody responses to SARS-CoV-2 will be critical for serology, seroprevalence and vaccine studies, as well as for our understanding of susceptibility to and natural course of SARS-CoV-2 infection. ### Competing Interest Statement The authors have declared no competing interest.

13: RIPK2 Stabilizes c-Myc and is an Actionable Target for Inhibiting Prostate Cancer Metastasis
more details view paper

Posted to bioRxiv 16 May 2020

RIPK2 Stabilizes c-Myc and is an Actionable Target for Inhibiting Prostate Cancer Metastasis
8,918 downloads cancer biology

Yiwu Yan, Bo Zhou, Chen Qian, Alex Vasquez, Avradip Chatterjee, Xiaopu Yuan, Edwin Posadas, Natasha Kyprianou, Beatrice S. Knudsen, Ramachandran Murali, Arkadiusz Gertych, Sungyong You, Michael R Freeman, Wei Yang

Despite advances in diagnosis and treatment, metastatic prostate cancer remains incurable and is associated with high mortality rates. Thus, novel actionable drug targets are urgently needed for therapeutic interventions in advanced prostate cancer. Here we report receptor-interacting protein kinase 2 (RIPK2) as an actionable drug target for suppressing prostate cancer metastasis. RIPK2 is frequently amplified in lethal prostate cancers and its overexpression is associated with disease progression and aggressiveness. Genetic and pharmacological inhibition of RIPK2 significantly suppressed prostate cancer progression in vitro and metastasis in vivo. Multi-level proteomic analysis revealed that RIPK2 strongly regulates c-Myc protein stability and activity, largely by activating the MKK7/JNK/c-Myc phosphorylation pathway - a novel, non-canonical RIPK2 signaling pathway. Targeting RIPK2 inhibits this phosphorylation pathway, and thus promotes the degradation of c-Myc - a potent oncoprotein for which no drugs have been approved for clinical use yet. These results support targeting RIPK2 for personalized therapy in prostate cancer patients towards improving survival. ### Competing Interest Statement The authors have declared no competing interest.

14: Lack of Reinfection in Rhesus Macaques Infected with SARS-CoV-2
more details view paper

Posted to bioRxiv 14 Mar 2020

Lack of Reinfection in Rhesus Macaques Infected with SARS-CoV-2
7,673 downloads microbiology

Linlin Bao, Wei Deng, Hong Gao, Chong Xiao, Jiayi Liu, Jing Xue, Qi Lv, Jiangning Liu, Pin Yu, Yanfeng Xu, Feifei Qi, Yajin Qu, Fengdi Li, Zhiguang Xiang, Haisheng Yu, Shuran Gong, Mingya Liu, Guanpeng Wang, Shunyi Wang, Zhiqi Song, Ying Liu, Wenjie Zhao, Yunlin Han, Linna Zhao, Xing Liu, Qiang Wei, Chuan Qin

A global pandemic of Corona Virus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is ongoing spread. It remains unclear whether the convalescing patients have a risk of reinfection. Rhesus macaques were rechallenged with SARS-CoV-2 during an early recovery phase from initial infection characterized by weight loss, interstitial pneumonia and systemic viral dissemination mainly in respiratory and gastrointestinal tracts. The monkeys rechallenged with the identical SARS-CoV-2 strain have failed to produce detectable viral dissemination, clinical manifestations and histopathological changes. A notably enhanced neutralizing antibody response might contribute the protection of rhesus macaques from the reinfection by SARS-CoV-2. Our results indicated that primary SARS-CoV-2 infection protects from subsequent reinfection. ### Competing Interest Statement The authors have declared no competing interest.

15: Susceptibility of ferrets, cats, dogs, and different domestic animals to SARS-coronavirus-2
more details view paper

Posted to bioRxiv 31 Mar 2020

Susceptibility of ferrets, cats, dogs, and different domestic animals to SARS-coronavirus-2
7,385 downloads microbiology

Jianzhong Shi, Zhiyuan Wen, Gongxun Zhong, Huanliang Yang, Chong Wang, Renqiang Liu, Xijun He, Lei Shuai, Ziruo Sun, Yubo Zhao, Libin Liang, Pengfei Cui, Jinliang Wang, Xianfeng Zhang, Yuntao Guan, Hualan Chen, Zhigao Bu

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the infectious disease COVID-19, which was first reported in Wuhan, China in December, 2019. Despite the tremendous efforts to control the disease, COVID-19 has now spread to over 100 countries and caused a global pandemic. SARS-CoV-2 is thought to have originated in bats; however, the intermediate animal sources of the virus are completely unknown. Here, we investigated the susceptibility of ferrets and animals in close contact with humans to SARS-CoV-2. We found that SARS-CoV-2 replicates poorly in dogs, pigs, chickens, and ducks, but efficiently in ferrets and cats. We found that the virus transmits in cats via respiratory droplets. Our study provides important insights into the animal reservoirs of SARS-CoV-2 and animal management for COVID-19 control.

16: Severe acute respiratory syndrome-related coronavirus – The species and its viruses, a statement of the Coronavirus Study Group
more details view paper

Posted to bioRxiv 11 Feb 2020

Severe acute respiratory syndrome-related coronavirus – The species and its viruses, a statement of the Coronavirus Study Group
7,028 downloads microbiology

Alexander E. Gorbalenya, Susan C. Baker, Ralph S. Baric, Raoul J. de Groot, Drosten Christian, Anastasia A. Gulyaeva, Bart L. Haagmans, Chris Lauber, Andrey M Leontovich, Benjamin W Neuman, Dmitry Penzar, Stanley Perlman, Leo L.M. Poon, Dmitry Samborskiy, Igor A. Sidorov, Isabel Sola, John Ziebuhr

The present outbreak of lower respiratory tract infections, including respiratory distress syndrome, is the third spillover, in only two decades, of an animal coronavirus to humans resulting in a major epidemic. Here, the Coronavirus Study Group (CSG) of the International Committee on Taxonomy of Viruses, which is responsible for developing the official classification of viruses and taxa naming (taxonomy) of the Coronaviridae family, assessed the novelty of the human pathogen tentatively named 2019-nCoV. Based on phylogeny, taxonomy and established practice, the CSG formally recognizes this virus as a sister to severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus and designates it as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To facilitate communication, the CSG further proposes to use the following naming convention for individual isolates: SARS-CoV-2/Isolate/Host/Date/Location. The spectrum of clinical manifestations associated with SARS-CoV-2 infections in humans remains to be determined. The independent zoonotic transmission of SARS-CoV and SARS-CoV-2 highlights the need for studying the entire (virus) species to complement research focused on individual pathogenic viruses of immediate significance. This research will improve our understanding of virus-host interactions in an ever-changing environment and enhance our preparedness for future outbreaks.

17: Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin
more details view paper

Posted to bioRxiv 23 Jan 2020

Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin
6,319 downloads microbiology

Peng Zhou, Xing-Lou Yang, Xian-Guang Wang, Ben Hu, Lei Zhang, Wei Zhang, Hao-Rui Si, Yan Zhu, Bei Li, Chao-Lin Huang, Hui-Dong Chen, Jing Chen, Yun Luo, Hua Guo, Ren-Di Jiang, Mei-Qin Liu, Ying Chen, Xu-Rui Shen, Xi Wang, Xiao-Shuang Zheng, Kai Zhao, Quan-Jiao Chen, Fei Deng, Lin-Lin Liu, Bing Yan, Fa-Xian Zhan, Yan-Yi Wang, Gengfu Xiao, Zheng-Li Shi

Since the SARS outbreak 18 years ago, a large number of severe acute respiratory syndrome related coronaviruses (SARSr-CoV) have been discovered in their natural reservoir host, bats. Previous studies indicated that some of those bat SARSr-CoVs have the potential to infect humans. Here we report the identification and characterization of a novel coronavirus (nCoV-2019) which caused an epidemic of acute respiratory syndrome in humans, in Wuhan, China. The epidemic, started from December 12th, 2019, has caused 198 laboratory confirmed infections with three fatal cases by January 20th, 2020. Full-length genome sequences were obtained from five patients at the early stage of the outbreak. They are almost identical to each other and share 79.5% sequence identify to SARS-CoV. Furthermore, it was found that nCoV-2019 is 96% identical at the whole genome level to a bat coronavirus. The pairwise protein sequence analysis of seven conserved non-structural proteins show that this virus belongs to the species of SARSr-CoV. The nCoV-2019 virus was then isolated from the bronchoalveolar lavage fluid of a critically ill patient, which can be neutralized by sera from several patients. Importantly, we have confirmed that this novel CoV uses the same cell entry receptor, ACE2, as SARS-CoV.

18: Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells
more details view paper

Posted to bioRxiv 20 Apr 2020

Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells
5,936 downloads bioinformatics

Christoph Muus, Malte D. Luecken, Gokcen Eraslan, Avinash Waghray, Graham Heimberg, Lisa Sikkema, Yoshihiko Kobayashi, Eeshit Dhaval Vaishnav, Ayshwarya Subramanian, Christopher Smilie, Karthik Jagadeesh, Elizabeth Thu Duong, Evgenij Fiskin, Elena Torlai Triglia, Meshal Ansari, Peiwen Cai, Brian Lin, Justin Buchanan, Sijia Chen, Jian Shu, Adam L. Haber, Hattie Chung, Daniel T Montoro, Taylor Adams, Hananeh Aliee, J. Samuel, Allon Zaneta Andrusivova, Ilias Angelidis, Orr Ashenberg, Kevin Bassler, Christophe Bécavin, Inbal Benhar, Joseph Bergenstråhle, Ludvig Bergenstråhle, Liam Bolt, Emelie Braun, Linh T Bui, Mark Chaffin, Evgeny Chichelnitskiy, Joshua Chiou, Thomas M Conlon, Michael S Cuoco, Marie Deprez, David S. Fischer, Astrid Gillich, Joshua Gould, Minzhe Guo, Austin J Gutierrez, Arun C Habermann, Tyler Harvey, Peng He, Xiaomeng Hou, Lijuan Hu, Alok Jaiswal, Peiyong Jiang, Theodoros Kapellos, Christin S Kuo, Ludvig Larsson, Michael A. Leney-Greene, Kyungtae Lim, Monika Litviňuková, Ji Lu, Leif S Ludwig, Wendy Luo, Henrike Maatz, Elo Madissoon, Lira Mamanova, Kasidet Manakongtreecheep, Charles-Hugo Marquette, Ian Mbano, Alexi Marie McAdams, Ross J Metzger, Ahmad N. Nabhan, Sarah K. Nyquist, Lolita Penland, Olivier B. Poirion, Sergio Poli, CanCan Qi, Rachel Queen, Daniel Reichart, Ivan Rosas, Jonas Schupp, Rahul Sinha, Rene V Sit, Kamil Slowikowski, Michal Slyper, Neal Smith, Alex Sountoulidis, Maximilian Strunz, Dawei Sun, Carlos Talavera-Lopez, Peng Tan, Jessica Tantivit, Kyle J. Travaglini, Nathan R. Tucker, Katherine Vernon, Marc H Wadsworth, Julia Waldman, Xiuting Wang, Wenjun Yan, William Zhao, Carly G. K. Ziegler, The NHLBI LungMAP Consortium, The Human Cell Atlas Lung Biological Network

The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, creates an urgent need for identifying molecular mechanisms that mediate viral entry, propagation, and tissue pathology. Cell membrane bound angiotensin-converting enzyme 2 (ACE2) and associated proteases, transmembrane protease serine 2 (TMPRSS2) and Cathepsin L (CTSL), were previously identified as mediators of SARS-CoV2 cellular entry. Here, we assess the cell type-specific RNA expression of ACE2, TMPRSS2, and CTSL through an integrated analysis of 107 single-cell and single-nucleus RNA-Seq studies, including 22 lung and airways datasets (16 unpublished), and 85 datasets from other diverse organs. Joint expression of ACE2 and the accessory proteases identifies specific subsets of respiratory epithelial cells as putative targets of viral infection in the nasal passages, airways, and alveoli. Cells that co-express ACE2 and proteases are also identified in cells from other organs, some of which have been associated with COVID-19 transmission or pathology, including gut enterocytes, corneal epithelial cells, cardiomyocytes, heart pericytes, olfactory sustentacular cells, and renal epithelial cells. Performing the first meta-analyses of scRNA-seq studies, we analyzed 1,176,683 cells from 282 nasal, airway, and lung parenchyma samples from 164 donors spanning fetal, childhood, adult, and elderly age groups, associate increased levels of ACE2, TMPRSS2, and CTSL in specific cell types with increasing age, male gender, and smoking, all of which are epidemiologically linked to COVID-19 susceptibility and outcomes. Notably, there was a particularly low expression of ACE2 in the few young pediatric samples in the analysis. Further analysis reveals a gene expression program shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues, including genes that may mediate viral entry, subtend key immune functions, and mediate epithelial-macrophage cross-talk. Amongst these are IL6, its receptor and co-receptor, IL1R, TNF response pathways, and complement genes. Cell type specificity in the lung and airways and smoking effects were conserved in mice. Our analyses suggest that differences in the cell type-specific expression of mediators of SARS-CoV-2 viral entry may be responsible for aspects of COVID-19 epidemiology and clinical course, and point to putative molecular pathways involved in disease susceptibility and pathogenesis. ### Competing Interest Statement N.K. was a consultant to Biogen Idec, Boehringer Ingelheim, Third Rock, Pliant, Samumed, NuMedii, Indaloo, Theravance, LifeMax, Three Lake Partners, Optikira and received non-financial support from MiRagen. All of these outside the work reported. J.L. is a scientific consultant for 10X Genomics Inc A.R. is a co-founder and equity holder of Celsius Therapeutics, an equity holder in Immunitas, and an SAB member of ThermoFisher Scientific, Syros Pharmaceuticals, Asimov, and Neogene Therapeutics O.R.R., is a co-inventor on patent applications filed by the Broad Institute to inventions relating to single cell genomics applications, such as in PCT/US2018/060860 and US Provisional Application No. 62/745,259. A.K.S. compensation for consulting and SAB membership from Honeycomb Biotechnologies, Cellarity, Cogen Therapeutics, Orche Bio, and Dahlia Biosciences. S.A.T. was a consultant at Genentech, Biogen and Roche in the last three years. F.J.T. reports receiving consulting fees from Roche Diagnostics GmbH, and ownership interest in Cellarity Inc. L.V. is funder of Definigen and Bilitech two biotech companies using hPSCs and organoid for disease modelling and cell based therapy.

19: Aerodynamic Characteristics and RNA Concentration of SARS-CoV-2 Aerosol in Wuhan Hospitals during COVID-19 Outbreak
more details view paper

Posted to bioRxiv 10 Mar 2020

Aerodynamic Characteristics and RNA Concentration of SARS-CoV-2 Aerosol in Wuhan Hospitals during COVID-19 Outbreak
5,159 downloads microbiology

Yuan Liu, Zhi Ning, Yu Chen, Ming Guo, Yingle Liu, Nirmal Kumar Gali, Li Sun, Yusen Duan, Jing Cai, Dane Westerdahl, Xinjin Liu, Kin-fai Ho, Haidong Kan, Qingyan Fu, Ke Lan

Background: The ongoing outbreak of COVID-19 has spread rapidly and sparked global concern. While the transmission of SARS-CoV-2 through human respiratory droplets and contact with infected persons is clear, the aerosol transmission of SARS-CoV-2 has been little studied. Methods: Thirty-five aerosol samples of three different types (total suspended particle, size segregated and deposition aerosol) were collected in Patient Areas (PAA) and Medical Staff Areas (MSA) of Renmin Hospital of Wuhan University (Renmin) and Wuchang Fangcang Field Hospital (Fangcang), and Public Areas (PUA) in Wuhan, China during COVID-19 outbreak. A robust droplet digital polymerase chain reaction (ddPCR) method was employed to quantitate the viral SARS-CoV-2 RNA genome and determine aerosol RNA concentration. Results: The ICU, CCU and general patient rooms inside Renmin, patient hall inside Fangcang had undetectable or low airborne SARS-CoV-2 concentration but deposition samples inside ICU and air sample in Fangcang patient toilet tested positive. The airborne SARS-CoV-2 in Fangcang MSA had bimodal distribution with higher concentration than those in Renmin during the outbreak but turned negative after patients number reduced and rigorous sanitization implemented. PUA had undetectable airborne SARS-CoV-2 concentration but obviously increased with accumulating crowd flow. Conclusions: Room ventilation, open space, proper use and disinfection of toilet can effectively limit aerosol transmission of SARS-CoV-2. Gathering of crowds with asymptomatic carriers is a potential source of airborne SARS-CoV-2. The virus aerosol deposition on protective apparel or floor surface and their subsequent resuspension is a potential transmission pathway and effective sanitization is critical in minimizing aerosol transmission of SARS-CoV-2.

20: A human monoclonal 1 antibody blocking SARS-CoV-2 infection
more details view paper

Posted to bioRxiv 12 Mar 2020

A human monoclonal 1 antibody blocking SARS-CoV-2 infection
4,994 downloads microbiology

Chunyan Wang, Wentao Li, Dubravka Drabek, Nisreen M.A. Okba, Rien van Haperen, Albert D.M.E. Osterhaus, Frank J.M. van Kuppeveld, Bart L. Haagmans, Frank Grosveld, Berend-Jan Bosch

The emergence of the novel human coronavirus SARS-CoV-2 in Wuhan, China has caused a worldwide epidemic of respiratory disease (COVID-19). Vaccines and targeted therapeutics for treatment of this disease are currently lacking. Here we report a human monoclonal antibody that neutralizes SARS-CoV-2 (and SARS-CoV). This cross-neutralizing antibody targets a communal epitope on these viruses and offers potential for prevention and treatment of COVID-19.

Previous page 1 2 3 4 5 . . . 4129 Next page


Sign up for the Rxivist weekly newsletter! (Click here for more details.)